基于统计隐写技术的分层纹理分类

Yu-Kuen Ho, Mei-Yi Wu, Jia-Hong Lee
{"title":"基于统计隐写技术的分层纹理分类","authors":"Yu-Kuen Ho, Mei-Yi Wu, Jia-Hong Lee","doi":"10.1109/ICDSP.2002.1028284","DOIUrl":null,"url":null,"abstract":"A novel method for adaptively selecting texture features is presented. We apply statistical steganography techniques with searching for an optimal set of binary masks to extract texture features and provide the best discrimination of texture images. The extracted texture features are robust to noise attacks. Moreover, a tree structure containing the selected set of masks has been set up for classification. Experiments show that the proposed method can achieve high classification rate and also work well in a noise environment.","PeriodicalId":351073,"journal":{"name":"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)","volume":"453 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hierarchic texture classification using statistical steganography techniques\",\"authors\":\"Yu-Kuen Ho, Mei-Yi Wu, Jia-Hong Lee\",\"doi\":\"10.1109/ICDSP.2002.1028284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel method for adaptively selecting texture features is presented. We apply statistical steganography techniques with searching for an optimal set of binary masks to extract texture features and provide the best discrimination of texture images. The extracted texture features are robust to noise attacks. Moreover, a tree structure containing the selected set of masks has been set up for classification. Experiments show that the proposed method can achieve high classification rate and also work well in a noise environment.\",\"PeriodicalId\":351073,\"journal\":{\"name\":\"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)\",\"volume\":\"453 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2002.1028284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2002.1028284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种新的纹理特征自适应选择方法。我们应用统计隐写技术,寻找一组最优的二值掩模来提取纹理特征,并提供纹理图像的最佳识别。提取的纹理特征对噪声攻击具有较强的鲁棒性。此外,还建立了包含所选掩码集的树状结构进行分类。实验结果表明,该方法不仅具有较高的分类率,而且在噪声环境下也能很好地工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchic texture classification using statistical steganography techniques
A novel method for adaptively selecting texture features is presented. We apply statistical steganography techniques with searching for an optimal set of binary masks to extract texture features and provide the best discrimination of texture images. The extracted texture features are robust to noise attacks. Moreover, a tree structure containing the selected set of masks has been set up for classification. Experiments show that the proposed method can achieve high classification rate and also work well in a noise environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信