{"title":"基于逐像素知识蒸馏策略的立体图像超分辨率","authors":"Li Ma, Sumei Li","doi":"10.1109/VCIP53242.2021.9675446","DOIUrl":null,"url":null,"abstract":"In stereo image super-resolution (SR), it is equally important to utilize intra-view and cross-view information. However, most existing methods only focus on the exploration of cross-view information and neglect the full mining of intra-view information, which limits the reconstruction performance of these methods. Since single image SR (SISR) methods are powerful in intra-view information exploitation, we propose to introduce the knowledge distillation strategy to transfer the knowledge of a SISR network (teacher network) to a stereo image SR network (student network). With the help of the teacher network, the student network can easily learn more intra-view information. Specifically, we propose pixel-wise distillation as the implementation method, which not only improves the intra-view information extraction ability of student network, but also ensures the effective learning of cross-view information. Moreover, we propose a lightweight student network named Adaptive Residual Feature Aggregation network (ARFAnet). Its main unit, the ARFA module, can aggregate informative residual features and produce more representative features for image reconstruction. Experimental results demonstrate that our teacher-student network achieves state-of-the-art performance on all benchmark datasets.","PeriodicalId":114062,"journal":{"name":"2021 International Conference on Visual Communications and Image Processing (VCIP)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stereo Image Super-Resolution Based on Pixel-Wise Knowledge Distillation Strategy\",\"authors\":\"Li Ma, Sumei Li\",\"doi\":\"10.1109/VCIP53242.2021.9675446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In stereo image super-resolution (SR), it is equally important to utilize intra-view and cross-view information. However, most existing methods only focus on the exploration of cross-view information and neglect the full mining of intra-view information, which limits the reconstruction performance of these methods. Since single image SR (SISR) methods are powerful in intra-view information exploitation, we propose to introduce the knowledge distillation strategy to transfer the knowledge of a SISR network (teacher network) to a stereo image SR network (student network). With the help of the teacher network, the student network can easily learn more intra-view information. Specifically, we propose pixel-wise distillation as the implementation method, which not only improves the intra-view information extraction ability of student network, but also ensures the effective learning of cross-view information. Moreover, we propose a lightweight student network named Adaptive Residual Feature Aggregation network (ARFAnet). Its main unit, the ARFA module, can aggregate informative residual features and produce more representative features for image reconstruction. Experimental results demonstrate that our teacher-student network achieves state-of-the-art performance on all benchmark datasets.\",\"PeriodicalId\":114062,\"journal\":{\"name\":\"2021 International Conference on Visual Communications and Image Processing (VCIP)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Visual Communications and Image Processing (VCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP53242.2021.9675446\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP53242.2021.9675446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stereo Image Super-Resolution Based on Pixel-Wise Knowledge Distillation Strategy
In stereo image super-resolution (SR), it is equally important to utilize intra-view and cross-view information. However, most existing methods only focus on the exploration of cross-view information and neglect the full mining of intra-view information, which limits the reconstruction performance of these methods. Since single image SR (SISR) methods are powerful in intra-view information exploitation, we propose to introduce the knowledge distillation strategy to transfer the knowledge of a SISR network (teacher network) to a stereo image SR network (student network). With the help of the teacher network, the student network can easily learn more intra-view information. Specifically, we propose pixel-wise distillation as the implementation method, which not only improves the intra-view information extraction ability of student network, but also ensures the effective learning of cross-view information. Moreover, we propose a lightweight student network named Adaptive Residual Feature Aggregation network (ARFAnet). Its main unit, the ARFA module, can aggregate informative residual features and produce more representative features for image reconstruction. Experimental results demonstrate that our teacher-student network achieves state-of-the-art performance on all benchmark datasets.