基于自回归综合移动平均线(ARIMA)的海平面预测——以印尼丹戎英丹港为例

Yehezkiel K. A. Purba, D. Saepudin, D. Adytia
{"title":"基于自回归综合移动平均线(ARIMA)的海平面预测——以印尼丹戎英丹港为例","authors":"Yehezkiel K. A. Purba, D. Saepudin, D. Adytia","doi":"10.1109/ICoICT49345.2020.9166310","DOIUrl":null,"url":null,"abstract":"Sea Level forecasting is vital for shores engineering applications such as for engineering construction plan in the shore or in offshore, and routing of ships at harbor. Researchers have been conducting many methods to predict sea levels, such as Artificial Neural Network, SARIMA, and ARIMA. In this paper, we will use a model of Autoregressive Integrated Moving Average (ARIMA) to predict sea level in Cilacap, Indonesia. The ARIMA parameters are obtained by conducting parameter tuning so that the model gives the lowest root mean square error value (RMSE) and the highest correlation coefficient.","PeriodicalId":113108,"journal":{"name":"2020 8th International Conference on Information and Communication Technology (ICoICT)","volume":"30 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Prediction of Sea Level by Using Autoregressive Integrated Moving Average (ARIMA): Case Study in Tanjung Intan Harbour Cilacap, Indonesia\",\"authors\":\"Yehezkiel K. A. Purba, D. Saepudin, D. Adytia\",\"doi\":\"10.1109/ICoICT49345.2020.9166310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sea Level forecasting is vital for shores engineering applications such as for engineering construction plan in the shore or in offshore, and routing of ships at harbor. Researchers have been conducting many methods to predict sea levels, such as Artificial Neural Network, SARIMA, and ARIMA. In this paper, we will use a model of Autoregressive Integrated Moving Average (ARIMA) to predict sea level in Cilacap, Indonesia. The ARIMA parameters are obtained by conducting parameter tuning so that the model gives the lowest root mean square error value (RMSE) and the highest correlation coefficient.\",\"PeriodicalId\":113108,\"journal\":{\"name\":\"2020 8th International Conference on Information and Communication Technology (ICoICT)\",\"volume\":\"30 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 8th International Conference on Information and Communication Technology (ICoICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICoICT49345.2020.9166310\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 8th International Conference on Information and Communication Technology (ICoICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICoICT49345.2020.9166310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

海平面预测对于岸上或近海工程建设规划、港口船舶路线等岸上工程应用具有重要意义。研究人员已经采用了人工神经网络、SARIMA、ARIMA等多种方法来预测海平面。在本文中,我们将使用自回归综合移动平均(ARIMA)模型来预测印度尼西亚Cilacap的海平面。通过参数整定得到ARIMA参数,使模型具有最低的均方根误差值(RMSE)和最高的相关系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of Sea Level by Using Autoregressive Integrated Moving Average (ARIMA): Case Study in Tanjung Intan Harbour Cilacap, Indonesia
Sea Level forecasting is vital for shores engineering applications such as for engineering construction plan in the shore or in offshore, and routing of ships at harbor. Researchers have been conducting many methods to predict sea levels, such as Artificial Neural Network, SARIMA, and ARIMA. In this paper, we will use a model of Autoregressive Integrated Moving Average (ARIMA) to predict sea level in Cilacap, Indonesia. The ARIMA parameters are obtained by conducting parameter tuning so that the model gives the lowest root mean square error value (RMSE) and the highest correlation coefficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信