R. V. Zhalnin, V. F. Masyagin, E. E. Peskova, V. Tishkin
{"title":"局部自适应网格细化的不连续伽辽金方法在多组分理想气体混合物二维流动建模中的应用","authors":"R. V. Zhalnin, V. F. Masyagin, E. E. Peskova, V. Tishkin","doi":"10.15507/2079-6900.21.201902.244-258","DOIUrl":null,"url":null,"abstract":"In this article a numerical algorithm is developed for solving of gas dynamics equations for a mixture of ideal gases on adaptive locally refined grids. The algorithm is based on discontinuous Galerkin method. To avoid the appearance of non-physical oscillations near the discontinuities, the Barth-Jespersen limiter is used. The numerical algorithm is based on the data structure and algorithms of the p4est library. In present work the numerical simulation of one problem of Richtmyer-Meshkov instability development is considered and the triple point problem is solved using the developed numerical algorithm of high accuracy order. The obtained results are in good agreement with the well-known numerical solutions. The pictures plotted basing on the solution describe in detail the dynamics of the complex flows under consideration.","PeriodicalId":273445,"journal":{"name":"Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of discontinuous Galerkin method to modeling of two-dimensional flows of a multicomponent ideal gases mixture using local adaptive mesh refinement\",\"authors\":\"R. V. Zhalnin, V. F. Masyagin, E. E. Peskova, V. Tishkin\",\"doi\":\"10.15507/2079-6900.21.201902.244-258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article a numerical algorithm is developed for solving of gas dynamics equations for a mixture of ideal gases on adaptive locally refined grids. The algorithm is based on discontinuous Galerkin method. To avoid the appearance of non-physical oscillations near the discontinuities, the Barth-Jespersen limiter is used. The numerical algorithm is based on the data structure and algorithms of the p4est library. In present work the numerical simulation of one problem of Richtmyer-Meshkov instability development is considered and the triple point problem is solved using the developed numerical algorithm of high accuracy order. The obtained results are in good agreement with the well-known numerical solutions. The pictures plotted basing on the solution describe in detail the dynamics of the complex flows under consideration.\",\"PeriodicalId\":273445,\"journal\":{\"name\":\"Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15507/2079-6900.21.201902.244-258\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15507/2079-6900.21.201902.244-258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Application of discontinuous Galerkin method to modeling of two-dimensional flows of a multicomponent ideal gases mixture using local adaptive mesh refinement
In this article a numerical algorithm is developed for solving of gas dynamics equations for a mixture of ideal gases on adaptive locally refined grids. The algorithm is based on discontinuous Galerkin method. To avoid the appearance of non-physical oscillations near the discontinuities, the Barth-Jespersen limiter is used. The numerical algorithm is based on the data structure and algorithms of the p4est library. In present work the numerical simulation of one problem of Richtmyer-Meshkov instability development is considered and the triple point problem is solved using the developed numerical algorithm of high accuracy order. The obtained results are in good agreement with the well-known numerical solutions. The pictures plotted basing on the solution describe in detail the dynamics of the complex flows under consideration.