{"title":"航空电气化对GB输电系统电压偏差影响的研究","authors":"Bozheng Li, Xin Zhang, Zekun Guo, Y. Yuan","doi":"10.1109/UPEC55022.2022.9917970","DOIUrl":null,"url":null,"abstract":"With the increasing demand for clean energy and rapid development of battery technology, there has been a notable trend in developing aviation electrification, particularly for small or regional electric aircraft (EA). Nevertheless, large penetration of EA with high charging power could also influence the stable operation of the upstream grid and even cause severe problems, particularly causing voltage-drop issue. In this paper, the impact on voltage deviation of the Great Britain (GB) electrical power system with the electrification of commercial aviation in the UK is highlighted and analysed. A reduced model of the GB transmission system developed in DigSILENT PowerFactory with 36 zones is modified by incorporating the load curves of the EA charging demand into the model. Quasi-Dynamic simulation is used to obtain 24-hour voltage profiles of each zone. Meanwhile, the Granger causality test is utilised to analyse the voltage profiles obtained from the Quasi-Dynamic simulation and determine the causal effects of the voltage variation between different areas of GB. The results reveal the significant impact of EA charging on the system. When the EA charging demand reached nearly IOOOOMW at20:00, the system voltage dropped to 0.826 p.u. The locations of the most influential zones for voltage variation in the system are also illustrated and analysed in this paper.","PeriodicalId":371561,"journal":{"name":"2022 57th International Universities Power Engineering Conference (UPEC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the Impact of Aviation Electrification on Voltage Deviation of the GB Transmission System\",\"authors\":\"Bozheng Li, Xin Zhang, Zekun Guo, Y. Yuan\",\"doi\":\"10.1109/UPEC55022.2022.9917970\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the increasing demand for clean energy and rapid development of battery technology, there has been a notable trend in developing aviation electrification, particularly for small or regional electric aircraft (EA). Nevertheless, large penetration of EA with high charging power could also influence the stable operation of the upstream grid and even cause severe problems, particularly causing voltage-drop issue. In this paper, the impact on voltage deviation of the Great Britain (GB) electrical power system with the electrification of commercial aviation in the UK is highlighted and analysed. A reduced model of the GB transmission system developed in DigSILENT PowerFactory with 36 zones is modified by incorporating the load curves of the EA charging demand into the model. Quasi-Dynamic simulation is used to obtain 24-hour voltage profiles of each zone. Meanwhile, the Granger causality test is utilised to analyse the voltage profiles obtained from the Quasi-Dynamic simulation and determine the causal effects of the voltage variation between different areas of GB. The results reveal the significant impact of EA charging on the system. When the EA charging demand reached nearly IOOOOMW at20:00, the system voltage dropped to 0.826 p.u. The locations of the most influential zones for voltage variation in the system are also illustrated and analysed in this paper.\",\"PeriodicalId\":371561,\"journal\":{\"name\":\"2022 57th International Universities Power Engineering Conference (UPEC)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 57th International Universities Power Engineering Conference (UPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UPEC55022.2022.9917970\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 57th International Universities Power Engineering Conference (UPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UPEC55022.2022.9917970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Study on the Impact of Aviation Electrification on Voltage Deviation of the GB Transmission System
With the increasing demand for clean energy and rapid development of battery technology, there has been a notable trend in developing aviation electrification, particularly for small or regional electric aircraft (EA). Nevertheless, large penetration of EA with high charging power could also influence the stable operation of the upstream grid and even cause severe problems, particularly causing voltage-drop issue. In this paper, the impact on voltage deviation of the Great Britain (GB) electrical power system with the electrification of commercial aviation in the UK is highlighted and analysed. A reduced model of the GB transmission system developed in DigSILENT PowerFactory with 36 zones is modified by incorporating the load curves of the EA charging demand into the model. Quasi-Dynamic simulation is used to obtain 24-hour voltage profiles of each zone. Meanwhile, the Granger causality test is utilised to analyse the voltage profiles obtained from the Quasi-Dynamic simulation and determine the causal effects of the voltage variation between different areas of GB. The results reveal the significant impact of EA charging on the system. When the EA charging demand reached nearly IOOOOMW at20:00, the system voltage dropped to 0.826 p.u. The locations of the most influential zones for voltage variation in the system are also illustrated and analysed in this paper.