传感器网络的中继卡尔曼滤波器

Zhigang Liu, Jinkuan Wang, W. Qu
{"title":"传感器网络的中继卡尔曼滤波器","authors":"Zhigang Liu, Jinkuan Wang, W. Qu","doi":"10.1109/ICCDA.2010.5541281","DOIUrl":null,"url":null,"abstract":"Due to limited sensing range for sensors, moving object tracking has to be realized by relaying from one sensor to the other in sensor networks, and so the tracking procedure can be modelled as a Markov chain system. Based on the Bayesian theory, we propose the relaying Kalman filter(RKF) algorithm which introduce the equations of updating sensor probability, and reconstruct the innovation equation. Furthermore, the extension of the proposed method can be applied in nonlinear dynamic system. Finally, simulation results show the effectiveness of the proposed RKF algorithm.","PeriodicalId":190625,"journal":{"name":"2010 International Conference On Computer Design and Applications","volume":"08 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Relaying Kalman filters for sensor networks\",\"authors\":\"Zhigang Liu, Jinkuan Wang, W. Qu\",\"doi\":\"10.1109/ICCDA.2010.5541281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to limited sensing range for sensors, moving object tracking has to be realized by relaying from one sensor to the other in sensor networks, and so the tracking procedure can be modelled as a Markov chain system. Based on the Bayesian theory, we propose the relaying Kalman filter(RKF) algorithm which introduce the equations of updating sensor probability, and reconstruct the innovation equation. Furthermore, the extension of the proposed method can be applied in nonlinear dynamic system. Finally, simulation results show the effectiveness of the proposed RKF algorithm.\",\"PeriodicalId\":190625,\"journal\":{\"name\":\"2010 International Conference On Computer Design and Applications\",\"volume\":\"08 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference On Computer Design and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCDA.2010.5541281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference On Computer Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCDA.2010.5541281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

由于传感器的感知范围有限,在传感器网络中,运动目标的跟踪必须通过从一个传感器中继到另一个传感器来实现,因此跟踪过程可以建模为马尔可夫链系统。基于贝叶斯理论,提出了引入传感器概率更新方程的继电卡尔曼滤波(RKF)算法,并重构了创新方程。此外,该方法的推广也适用于非线性动态系统。最后,仿真结果表明了所提RKF算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relaying Kalman filters for sensor networks
Due to limited sensing range for sensors, moving object tracking has to be realized by relaying from one sensor to the other in sensor networks, and so the tracking procedure can be modelled as a Markov chain system. Based on the Bayesian theory, we propose the relaying Kalman filter(RKF) algorithm which introduce the equations of updating sensor probability, and reconstruct the innovation equation. Furthermore, the extension of the proposed method can be applied in nonlinear dynamic system. Finally, simulation results show the effectiveness of the proposed RKF algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信