利用向量扩展来加速时间序列分析

Ricardo Quislant, I. Fernandez, E. Serralvo, E. Gutiérrez, O. Plata
{"title":"利用向量扩展来加速时间序列分析","authors":"Ricardo Quislant, I. Fernandez, E. Serralvo, E. Gutiérrez, O. Plata","doi":"10.1109/pdp55904.2022.00017","DOIUrl":null,"url":null,"abstract":"Time series analysis is an important research topic and a key step in monitoring and predicting events in many fields. Recently, the Matrix Profile method, and particularly two of its Euclidean-distance-based implementations – SCRIMP and SCAMP – have become the state-of-the-art approaches in this field. Those algorithms bring the possibility of obtaining exact motifs and discords from a time series, which can be used to infer events, predict outcomes, detect anomalies and more. While matrix profile is embarrassingly parallelizable, we find that autovectorization techniques fail to fully exploit the SIMD capabilities of modern CPU architectures. In this paper, we develop custom-vectorized SCRIMP and SCAMP implementations based on AVX2 and AVX-512 extensions, which we combine with multithreading techniques aimed at exploiting the potential of the underneath architectures. Our experimental evaluation, conducted using real data, shows a performance improvement of more than 4× with respect to the autovectorization.","PeriodicalId":210759,"journal":{"name":"2022 30th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploiting Vector Extennsions to Accelerate Time Series Analysis\",\"authors\":\"Ricardo Quislant, I. Fernandez, E. Serralvo, E. Gutiérrez, O. Plata\",\"doi\":\"10.1109/pdp55904.2022.00017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Time series analysis is an important research topic and a key step in monitoring and predicting events in many fields. Recently, the Matrix Profile method, and particularly two of its Euclidean-distance-based implementations – SCRIMP and SCAMP – have become the state-of-the-art approaches in this field. Those algorithms bring the possibility of obtaining exact motifs and discords from a time series, which can be used to infer events, predict outcomes, detect anomalies and more. While matrix profile is embarrassingly parallelizable, we find that autovectorization techniques fail to fully exploit the SIMD capabilities of modern CPU architectures. In this paper, we develop custom-vectorized SCRIMP and SCAMP implementations based on AVX2 and AVX-512 extensions, which we combine with multithreading techniques aimed at exploiting the potential of the underneath architectures. Our experimental evaluation, conducted using real data, shows a performance improvement of more than 4× with respect to the autovectorization.\",\"PeriodicalId\":210759,\"journal\":{\"name\":\"2022 30th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 30th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/pdp55904.2022.00017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/pdp55904.2022.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

时间序列分析是一个重要的研究课题,是许多领域事件监测和预测的关键步骤。最近,矩阵剖面方法,特别是它的两个基于欧几里得距离的实现- SCRIMP和SCAMP -已经成为该领域最先进的方法。这些算法带来了从时间序列中获得精确的动机和不和谐的可能性,可用于推断事件,预测结果,检测异常等等。虽然矩阵配置文件具有令人尴尬的并行性,但我们发现自动向量化技术无法充分利用现代CPU架构的SIMD功能。在本文中,我们基于AVX2和AVX-512扩展开发了自定义矢量化的SCRIMP和SCAMP实现,我们将其与多线程技术相结合,旨在开发底层架构的潜力。我们使用真实数据进行的实验评估显示,相对于自动向量化,性能提高了4倍以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploiting Vector Extennsions to Accelerate Time Series Analysis
Time series analysis is an important research topic and a key step in monitoring and predicting events in many fields. Recently, the Matrix Profile method, and particularly two of its Euclidean-distance-based implementations – SCRIMP and SCAMP – have become the state-of-the-art approaches in this field. Those algorithms bring the possibility of obtaining exact motifs and discords from a time series, which can be used to infer events, predict outcomes, detect anomalies and more. While matrix profile is embarrassingly parallelizable, we find that autovectorization techniques fail to fully exploit the SIMD capabilities of modern CPU architectures. In this paper, we develop custom-vectorized SCRIMP and SCAMP implementations based on AVX2 and AVX-512 extensions, which we combine with multithreading techniques aimed at exploiting the potential of the underneath architectures. Our experimental evaluation, conducted using real data, shows a performance improvement of more than 4× with respect to the autovectorization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信