基于解剖特征分型的颅脑损伤CT快速分型

Ruizhe Liu, Shimiao Li, C. Tan, B. Pang, C. Lim, C. Lee, Qi Tian, Zhuo Zhang
{"title":"基于解剖特征分型的颅脑损伤CT快速分型","authors":"Ruizhe Liu, Shimiao Li, C. Tan, B. Pang, C. Lim, C. Lee, Qi Tian, Zhuo Zhang","doi":"10.1109/ICIP.2010.5652317","DOIUrl":null,"url":null,"abstract":"Computed tomography (CT) is used widely in traumatic brain injury diagnosis. One axial brain CT scan consists of multiple slices with different heights along the brain axial direction. Indexing of brain CT slices is to order the slices and align each individual slice onto the corresponding brain axial height, which is an important step in content-based image retrieval and computer-assisted diagnosis. Current existing methods for this indexing task are through the image registration techniques by registering 2D image slices onto a 3D brain atlas. In this paper, instead of using the registration methods, we propose a fast indexing method using anatomical feature classification. In our method, the brain CT scan is divided into 6 height levels along the axial direction so that slices in each level share similar anatomical structure. In this way, the indexing problem becomes a classification problem that one series of scan slices are to be classified into 6 classes. Experimental results show that the proposed method is effective and efficient.","PeriodicalId":228308,"journal":{"name":"2010 IEEE International Conference on Image Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Fast traumatic brain injury CT slice indexing via anatomical feature classification\",\"authors\":\"Ruizhe Liu, Shimiao Li, C. Tan, B. Pang, C. Lim, C. Lee, Qi Tian, Zhuo Zhang\",\"doi\":\"10.1109/ICIP.2010.5652317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computed tomography (CT) is used widely in traumatic brain injury diagnosis. One axial brain CT scan consists of multiple slices with different heights along the brain axial direction. Indexing of brain CT slices is to order the slices and align each individual slice onto the corresponding brain axial height, which is an important step in content-based image retrieval and computer-assisted diagnosis. Current existing methods for this indexing task are through the image registration techniques by registering 2D image slices onto a 3D brain atlas. In this paper, instead of using the registration methods, we propose a fast indexing method using anatomical feature classification. In our method, the brain CT scan is divided into 6 height levels along the axial direction so that slices in each level share similar anatomical structure. In this way, the indexing problem becomes a classification problem that one series of scan slices are to be classified into 6 classes. Experimental results show that the proposed method is effective and efficient.\",\"PeriodicalId\":228308,\"journal\":{\"name\":\"2010 IEEE International Conference on Image Processing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2010.5652317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2010.5652317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

计算机断层扫描(CT)在外伤性脑损伤诊断中应用广泛。一次脑轴位CT扫描由沿脑轴向不同高度的多片组成。脑CT切片的标引是对切片进行排序,并将每个切片与相应的脑轴高对齐,这是基于内容的图像检索和计算机辅助诊断的重要步骤。目前已有的索引方法是通过图像配准技术,将二维图像切片配准到三维脑图谱上。在本文中,我们提出了一种基于解剖特征分类的快速索引方法,而不是使用配准方法。在我们的方法中,大脑CT扫描沿轴向分为6个高度层,使每个高度层的切片具有相似的解剖结构。这样,索引问题就变成了一个分类问题,将一组扫描片划分为6类。实验结果表明,该方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast traumatic brain injury CT slice indexing via anatomical feature classification
Computed tomography (CT) is used widely in traumatic brain injury diagnosis. One axial brain CT scan consists of multiple slices with different heights along the brain axial direction. Indexing of brain CT slices is to order the slices and align each individual slice onto the corresponding brain axial height, which is an important step in content-based image retrieval and computer-assisted diagnosis. Current existing methods for this indexing task are through the image registration techniques by registering 2D image slices onto a 3D brain atlas. In this paper, instead of using the registration methods, we propose a fast indexing method using anatomical feature classification. In our method, the brain CT scan is divided into 6 height levels along the axial direction so that slices in each level share similar anatomical structure. In this way, the indexing problem becomes a classification problem that one series of scan slices are to be classified into 6 classes. Experimental results show that the proposed method is effective and efficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信