通过从可比语料库中自动获取双语术语来增强跨语言信息检索

F. Sadat, Masatoshi Yoshikawa, Shunsuke Uemura
{"title":"通过从可比语料库中自动获取双语术语来增强跨语言信息检索","authors":"F. Sadat, Masatoshi Yoshikawa, Shunsuke Uemura","doi":"10.1145/860435.860519","DOIUrl":null,"url":null,"abstract":"This paper presents an approach to bilingual lexicon extraction from comparable corpora and evaluations on Cross-Language Information Retrieval. We explore a bi-directional extraction of bilingual terminology primarily from comparable corpora. A combined statistics-based and linguistics-based model to select best translation candidates to phrasal translation is proposed. Evaluations using a large test collection for Japanese-English revealed the proposed combination of bi-directional comparable corpora, bilingual dictionaries and transliteration, augmented with linguistics-based pruning to be highly effective in Cross-Language Information Retrieval.","PeriodicalId":209809,"journal":{"name":"Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Enhancing cross-language information retrieval by an automatic acquisition of bilingual terminology from comparable corpora\",\"authors\":\"F. Sadat, Masatoshi Yoshikawa, Shunsuke Uemura\",\"doi\":\"10.1145/860435.860519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an approach to bilingual lexicon extraction from comparable corpora and evaluations on Cross-Language Information Retrieval. We explore a bi-directional extraction of bilingual terminology primarily from comparable corpora. A combined statistics-based and linguistics-based model to select best translation candidates to phrasal translation is proposed. Evaluations using a large test collection for Japanese-English revealed the proposed combination of bi-directional comparable corpora, bilingual dictionaries and transliteration, augmented with linguistics-based pruning to be highly effective in Cross-Language Information Retrieval.\",\"PeriodicalId\":209809,\"journal\":{\"name\":\"Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/860435.860519\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/860435.860519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文提出了一种从可比语料库中提取双语词汇的方法,并对跨语言信息检索进行了评价。我们主要从可比语料库中探索双语术语的双向提取。提出了一种基于统计学和语言学相结合的短语翻译候选译文选择模型。使用大型日语-英语测试集进行的评估显示,建议将双向可比语料库、双语词典和音译结合起来,并辅以基于语言学的修剪,在跨语言信息检索中非常有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing cross-language information retrieval by an automatic acquisition of bilingual terminology from comparable corpora
This paper presents an approach to bilingual lexicon extraction from comparable corpora and evaluations on Cross-Language Information Retrieval. We explore a bi-directional extraction of bilingual terminology primarily from comparable corpora. A combined statistics-based and linguistics-based model to select best translation candidates to phrasal translation is proposed. Evaluations using a large test collection for Japanese-English revealed the proposed combination of bi-directional comparable corpora, bilingual dictionaries and transliteration, augmented with linguistics-based pruning to be highly effective in Cross-Language Information Retrieval.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信