{"title":"高光谱土壤质地分类","authors":"Xudong Zhang, V. Vijayaraj, N. H. Younan","doi":"10.1109/WARSD.2003.1295191","DOIUrl":null,"url":null,"abstract":"A soil texture classification system is developed and exploited in the hyperspectral domain. The hyperspectral signatures of three different pure soil textures, i.e., sand, silt and clay, combined with a linear mixture model, are used to generate signals representing different types of soil textures. Feature extraction via the discrete wavelet transform and linear discriminant analysis for feature vector reduction and optimization are used. Different types of classifiers, which include the nearest mean and maximum likelihood, are incorporated to test the system's applicability. Classification accuracy is evaluated using a leave-one-out method. Experimental results are presented and possible future works are discussed.","PeriodicalId":395735,"journal":{"name":"IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Hyperspectral soil texture classification\",\"authors\":\"Xudong Zhang, V. Vijayaraj, N. H. Younan\",\"doi\":\"10.1109/WARSD.2003.1295191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A soil texture classification system is developed and exploited in the hyperspectral domain. The hyperspectral signatures of three different pure soil textures, i.e., sand, silt and clay, combined with a linear mixture model, are used to generate signals representing different types of soil textures. Feature extraction via the discrete wavelet transform and linear discriminant analysis for feature vector reduction and optimization are used. Different types of classifiers, which include the nearest mean and maximum likelihood, are incorporated to test the system's applicability. Classification accuracy is evaluated using a leave-one-out method. Experimental results are presented and possible future works are discussed.\",\"PeriodicalId\":395735,\"journal\":{\"name\":\"IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WARSD.2003.1295191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WARSD.2003.1295191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A soil texture classification system is developed and exploited in the hyperspectral domain. The hyperspectral signatures of three different pure soil textures, i.e., sand, silt and clay, combined with a linear mixture model, are used to generate signals representing different types of soil textures. Feature extraction via the discrete wavelet transform and linear discriminant analysis for feature vector reduction and optimization are used. Different types of classifiers, which include the nearest mean and maximum likelihood, are incorporated to test the system's applicability. Classification accuracy is evaluated using a leave-one-out method. Experimental results are presented and possible future works are discussed.