基于超复数预处理的量子神经元糖尿病预测

Cláudio A. Monteiro, F. M. P. Neto
{"title":"基于超复数预处理的量子神经元糖尿病预测","authors":"Cláudio A. Monteiro, F. M. P. Neto","doi":"10.1109/SSCI50451.2021.9660028","DOIUrl":null,"url":null,"abstract":"The use of properties that are intrinsic to quantum mechanics has made it possible to build quantum algorithms with greater efficiency than classical algorithms to solve problems whose classically efficient solution either does not exist or is not known. There are quantum neurons that can carry an exponential amount of information to a linear number of quantum information units (qubits) using the quantum property of superposition. In this paper, we compare the performance of three of these quantum neuron models applied to the diabetes classification problem. We also propose the use of different data preprocessing strategies. Quantum neurons were simulated using the IBM Qiskit tool. We compare the preprocessing approaches applied to two toy problems (1) simulating the XOR operator and (2) solving a generic nonlinear problem. The results of the experiments shows that a single quantum neuron is capable of achieving an accuracy rate of 100% in the XOR problem and an accuracy rate of 100% in a non-linear dataset, demonstrating that the quantum neurons with real weights are capable of modeling non-linearly separable problems. In the problem of diagnosing diabetes, quantum neurons achieved an accuracy rate of 76% and AUC-ROC of 88%, while its classic version, the perceptron, reached only 63% accuracy and the artificial neural network reached 80% AUC-ROC. These results indicate that a single quantum neuron performs better than its classical version and even the artificial neural network for AUC-ROC, demonstrating potential for use in healthcare applications in the near future.","PeriodicalId":255763,"journal":{"name":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diabetes Prediction Using Quantum Neurons with Preprocessing Based on Hypercomplex Numbers\",\"authors\":\"Cláudio A. Monteiro, F. M. P. Neto\",\"doi\":\"10.1109/SSCI50451.2021.9660028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of properties that are intrinsic to quantum mechanics has made it possible to build quantum algorithms with greater efficiency than classical algorithms to solve problems whose classically efficient solution either does not exist or is not known. There are quantum neurons that can carry an exponential amount of information to a linear number of quantum information units (qubits) using the quantum property of superposition. In this paper, we compare the performance of three of these quantum neuron models applied to the diabetes classification problem. We also propose the use of different data preprocessing strategies. Quantum neurons were simulated using the IBM Qiskit tool. We compare the preprocessing approaches applied to two toy problems (1) simulating the XOR operator and (2) solving a generic nonlinear problem. The results of the experiments shows that a single quantum neuron is capable of achieving an accuracy rate of 100% in the XOR problem and an accuracy rate of 100% in a non-linear dataset, demonstrating that the quantum neurons with real weights are capable of modeling non-linearly separable problems. In the problem of diagnosing diabetes, quantum neurons achieved an accuracy rate of 76% and AUC-ROC of 88%, while its classic version, the perceptron, reached only 63% accuracy and the artificial neural network reached 80% AUC-ROC. These results indicate that a single quantum neuron performs better than its classical version and even the artificial neural network for AUC-ROC, demonstrating potential for use in healthcare applications in the near future.\",\"PeriodicalId\":255763,\"journal\":{\"name\":\"2021 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI50451.2021.9660028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI50451.2021.9660028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用量子力学固有的性质,可以建立比经典算法效率更高的量子算法,来解决那些经典有效解不存在或不知道的问题。有一些量子神经元可以利用叠加的量子特性,将指数级的信息携带到线性数量的量子信息单位(量子位)。在本文中,我们比较了应用于糖尿病分类问题的三种量子神经元模型的性能。我们还建议使用不同的数据预处理策略。使用IBM Qiskit工具模拟量子神经元。我们比较了应用于两个玩具问题(1)模拟异或运算符和(2)解决一般非线性问题的预处理方法。实验结果表明,单个量子神经元能够在异或问题中达到100%的准确率,在非线性数据集中达到100%的准确率,表明具有真实权重的量子神经元能够建模非线性可分问题。在诊断糖尿病的问题中,量子神经元的准确率达到76%,AUC-ROC达到88%,而其经典版本感知机的准确率仅为63%,人工神经网络的AUC-ROC达到80%。这些结果表明,单个量子神经元的性能优于其经典版本,甚至优于AUC-ROC的人工神经网络,显示了在不久的将来在医疗保健应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diabetes Prediction Using Quantum Neurons with Preprocessing Based on Hypercomplex Numbers
The use of properties that are intrinsic to quantum mechanics has made it possible to build quantum algorithms with greater efficiency than classical algorithms to solve problems whose classically efficient solution either does not exist or is not known. There are quantum neurons that can carry an exponential amount of information to a linear number of quantum information units (qubits) using the quantum property of superposition. In this paper, we compare the performance of three of these quantum neuron models applied to the diabetes classification problem. We also propose the use of different data preprocessing strategies. Quantum neurons were simulated using the IBM Qiskit tool. We compare the preprocessing approaches applied to two toy problems (1) simulating the XOR operator and (2) solving a generic nonlinear problem. The results of the experiments shows that a single quantum neuron is capable of achieving an accuracy rate of 100% in the XOR problem and an accuracy rate of 100% in a non-linear dataset, demonstrating that the quantum neurons with real weights are capable of modeling non-linearly separable problems. In the problem of diagnosing diabetes, quantum neurons achieved an accuracy rate of 76% and AUC-ROC of 88%, while its classic version, the perceptron, reached only 63% accuracy and the artificial neural network reached 80% AUC-ROC. These results indicate that a single quantum neuron performs better than its classical version and even the artificial neural network for AUC-ROC, demonstrating potential for use in healthcare applications in the near future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信