使用统计学习的Twitter数据垃圾邮件和情感分析模型

Anita, D. Gupta, Ashish Kumar
{"title":"使用统计学习的Twitter数据垃圾邮件和情感分析模型","authors":"Anita, D. Gupta, Ashish Kumar","doi":"10.1145/2983402.2983404","DOIUrl":null,"url":null,"abstract":"The past empirical work of twitter spam detection and sentiment analysis is based on random selection of features for the generation of classification models. This paper focus on the selection of model by applying multiple linear regression using stat models for fitting n dimensional hyper plane predictor (i.e. Twitter features) to our response variable (i.e. Spam and sentiments). This paper includes following parts: 1) Spam Detection Classifier 2) Bayesian and Log-Likelihood based sentiment classifier 3) Evaluation of classification system using different machine learning algorithms (i.e. Binomial, CART and Random Forest). Our experimental evaluation demonstrates that the efficiency of Random Forest is higher compared to other algorithms of the proposed classification system.","PeriodicalId":283626,"journal":{"name":"Proceedings of the Third International Symposium on Computer Vision and the Internet","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Spam and Sentiment Analysis Model for Twitter Data using Statistical Learning\",\"authors\":\"Anita, D. Gupta, Ashish Kumar\",\"doi\":\"10.1145/2983402.2983404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The past empirical work of twitter spam detection and sentiment analysis is based on random selection of features for the generation of classification models. This paper focus on the selection of model by applying multiple linear regression using stat models for fitting n dimensional hyper plane predictor (i.e. Twitter features) to our response variable (i.e. Spam and sentiments). This paper includes following parts: 1) Spam Detection Classifier 2) Bayesian and Log-Likelihood based sentiment classifier 3) Evaluation of classification system using different machine learning algorithms (i.e. Binomial, CART and Random Forest). Our experimental evaluation demonstrates that the efficiency of Random Forest is higher compared to other algorithms of the proposed classification system.\",\"PeriodicalId\":283626,\"journal\":{\"name\":\"Proceedings of the Third International Symposium on Computer Vision and the Internet\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Third International Symposium on Computer Vision and the Internet\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2983402.2983404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third International Symposium on Computer Vision and the Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2983402.2983404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

过去twitter垃圾邮件检测和情感分析的实证工作是基于随机选择特征来生成分类模型。本文的重点是通过使用状态模型应用多元线性回归将n维超平面预测器(即Twitter特征)拟合到我们的响应变量(即垃圾邮件和情绪)来选择模型。本文包括以下几个部分:1)垃圾邮件检测分类器2)基于贝叶斯和对数似然的情感分类器3)使用不同机器学习算法(即Binomial, CART和Random Forest)的分类系统评估。我们的实验评估表明,与所提出的分类系统的其他算法相比,随机森林的效率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spam and Sentiment Analysis Model for Twitter Data using Statistical Learning
The past empirical work of twitter spam detection and sentiment analysis is based on random selection of features for the generation of classification models. This paper focus on the selection of model by applying multiple linear regression using stat models for fitting n dimensional hyper plane predictor (i.e. Twitter features) to our response variable (i.e. Spam and sentiments). This paper includes following parts: 1) Spam Detection Classifier 2) Bayesian and Log-Likelihood based sentiment classifier 3) Evaluation of classification system using different machine learning algorithms (i.e. Binomial, CART and Random Forest). Our experimental evaluation demonstrates that the efficiency of Random Forest is higher compared to other algorithms of the proposed classification system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信