大残差多视角三维CNN在肺结节检测中的假阳性复位

A. Dobrenkii, R. Kuleev, Adil Khan, Adín Ramírez Rivera, A. Khattak
{"title":"大残差多视角三维CNN在肺结节检测中的假阳性复位","authors":"A. Dobrenkii, R. Kuleev, Adil Khan, Adín Ramírez Rivera, A. Khattak","doi":"10.1109/CIBCB.2017.8058549","DOIUrl":null,"url":null,"abstract":"Pulmonary nodules detection play a significant role in the early detection and treatment of lung cancer. False positive reduction is the one of the major parts of pulmonary nodules detection systems. In this study a novel method aimed at recognizing real pulmonary nodule among a large group of candidates was proposed. The method consists of three steps: appropriate receptive field selection, feature extraction and a strategy for high level feature fusion and classification. The dataset consists of 888 patient's chest volume low dose computer tomography (LDCT) scans, selected from publicly available LIDC-IDRI dataset. This dataset was marked by LUNA16 challenge organizers resulting in 1186 nodules. Trivial data augmentation and dropout were applied in order to avoid overfitting. Our method achieved high competition performance metric (CPM) of 0.735 and sensitivities of 78.8% and 83.9% at 1 and 4 false positives per scan, respectively. This study is also accompanied by detailed descriptions and results overview in comparison with the state of the art solutions.","PeriodicalId":283115,"journal":{"name":"2017 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Large residual multiple view 3D CNN for false positive reduction in pulmonary nodule detection\",\"authors\":\"A. Dobrenkii, R. Kuleev, Adil Khan, Adín Ramírez Rivera, A. Khattak\",\"doi\":\"10.1109/CIBCB.2017.8058549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pulmonary nodules detection play a significant role in the early detection and treatment of lung cancer. False positive reduction is the one of the major parts of pulmonary nodules detection systems. In this study a novel method aimed at recognizing real pulmonary nodule among a large group of candidates was proposed. The method consists of three steps: appropriate receptive field selection, feature extraction and a strategy for high level feature fusion and classification. The dataset consists of 888 patient's chest volume low dose computer tomography (LDCT) scans, selected from publicly available LIDC-IDRI dataset. This dataset was marked by LUNA16 challenge organizers resulting in 1186 nodules. Trivial data augmentation and dropout were applied in order to avoid overfitting. Our method achieved high competition performance metric (CPM) of 0.735 and sensitivities of 78.8% and 83.9% at 1 and 4 false positives per scan, respectively. This study is also accompanied by detailed descriptions and results overview in comparison with the state of the art solutions.\",\"PeriodicalId\":283115,\"journal\":{\"name\":\"2017 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIBCB.2017.8058549\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2017.8058549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

肺结节检测对肺癌的早期发现和治疗具有重要意义。假阳性降低是肺结节检测系统的重要组成部分之一。在这项研究中,提出了一种在大量候选肺结节中识别真实肺结节的新方法。该方法包括三个步骤:适当的感受野选择、特征提取和高级特征融合与分类策略。该数据集由888名患者的胸部低剂量计算机断层扫描(LDCT)扫描组成,选择自公开可用的LIDC-IDRI数据集。该数据集由LUNA16挑战组织者标记,产生1186个结节。为了避免过拟合,使用了琐碎的数据增强和dropout。我们的方法获得了0.735的高竞争绩效指标(CPM)和78.8%和83.9%的灵敏度,每次扫描分别有1和4个假阳性。本研究还附有详细的描述和结果概述,与最先进的解决方案进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large residual multiple view 3D CNN for false positive reduction in pulmonary nodule detection
Pulmonary nodules detection play a significant role in the early detection and treatment of lung cancer. False positive reduction is the one of the major parts of pulmonary nodules detection systems. In this study a novel method aimed at recognizing real pulmonary nodule among a large group of candidates was proposed. The method consists of three steps: appropriate receptive field selection, feature extraction and a strategy for high level feature fusion and classification. The dataset consists of 888 patient's chest volume low dose computer tomography (LDCT) scans, selected from publicly available LIDC-IDRI dataset. This dataset was marked by LUNA16 challenge organizers resulting in 1186 nodules. Trivial data augmentation and dropout were applied in order to avoid overfitting. Our method achieved high competition performance metric (CPM) of 0.735 and sensitivities of 78.8% and 83.9% at 1 and 4 false positives per scan, respectively. This study is also accompanied by detailed descriptions and results overview in comparison with the state of the art solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信