基于模型的转录组工程

M. Brent
{"title":"基于模型的转录组工程","authors":"M. Brent","doi":"10.1145/3107411.3107454","DOIUrl":null,"url":null,"abstract":"The ability to rationally manipulate the transcriptional states of cells would be of great use in medicine and bioengineering. We have developed an algorithm, NetSurgeon, which uses genome wide gene-regulatory networks to identify interventions that force a cell toward a desired expression state. We first validated NetSurgeon extensively on existing datasets. Next, we used Net-Surgeon to select transcription factor deletions aimed at improving ethanol production in Saccharomyces cerevisiae cultures that are catabolizing xylose. We reasoned that interventions that move the transcriptional state of cells using xylose toward that of cells producing large amounts of ethanol from glucose might improve xylose fermentation. Some of the interventions selected by NetSurgeon successfully promoted a fermentative transcriptional state in the absence of glucose, resulting in strains with a 2.7-fold increase in xylose import rates, a 4-fold improvement in xylose integration into central carbon metabolism, or a 1.3-fold increase in ethanol production rate. We conclude by presenting an integrated model of transcriptional regulation and metabolic flux that will enable future efforts aimed at improving xylose fermentation to prioritize functional regulators of central carbon metabolism.","PeriodicalId":246388,"journal":{"name":"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model-based Transcriptome Engineering\",\"authors\":\"M. Brent\",\"doi\":\"10.1145/3107411.3107454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ability to rationally manipulate the transcriptional states of cells would be of great use in medicine and bioengineering. We have developed an algorithm, NetSurgeon, which uses genome wide gene-regulatory networks to identify interventions that force a cell toward a desired expression state. We first validated NetSurgeon extensively on existing datasets. Next, we used Net-Surgeon to select transcription factor deletions aimed at improving ethanol production in Saccharomyces cerevisiae cultures that are catabolizing xylose. We reasoned that interventions that move the transcriptional state of cells using xylose toward that of cells producing large amounts of ethanol from glucose might improve xylose fermentation. Some of the interventions selected by NetSurgeon successfully promoted a fermentative transcriptional state in the absence of glucose, resulting in strains with a 2.7-fold increase in xylose import rates, a 4-fold improvement in xylose integration into central carbon metabolism, or a 1.3-fold increase in ethanol production rate. We conclude by presenting an integrated model of transcriptional regulation and metabolic flux that will enable future efforts aimed at improving xylose fermentation to prioritize functional regulators of central carbon metabolism.\",\"PeriodicalId\":246388,\"journal\":{\"name\":\"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3107411.3107454\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3107411.3107454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

合理操纵细胞转录状态的能力将在医学和生物工程中有很大的用途。我们已经开发了一种算法,NetSurgeon,它使用全基因组范围的基因调控网络来识别迫使细胞进入所需表达状态的干预措施。我们首先在现有数据集上广泛验证了NetSurgeon。接下来,我们使用Net-Surgeon选择转录因子缺失,旨在提高分解木糖的酿酒酵母培养物的乙醇产量。我们推断,将使用木糖的细胞的转录状态转移到从葡萄糖产生大量乙醇的细胞的转录状态可能会改善木糖发酵。NetSurgeon选择的一些干预措施成功地在没有葡萄糖的情况下促进了发酵转录状态,结果菌株木糖进口率提高了2.7倍,木糖整合到中心碳代谢的效率提高了4倍,乙醇产量提高了1.3倍。最后,我们提出了一个转录调控和代谢通量的综合模型,这将使未来的努力旨在改善木糖发酵,优先考虑中心碳代谢的功能调节因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model-based Transcriptome Engineering
The ability to rationally manipulate the transcriptional states of cells would be of great use in medicine and bioengineering. We have developed an algorithm, NetSurgeon, which uses genome wide gene-regulatory networks to identify interventions that force a cell toward a desired expression state. We first validated NetSurgeon extensively on existing datasets. Next, we used Net-Surgeon to select transcription factor deletions aimed at improving ethanol production in Saccharomyces cerevisiae cultures that are catabolizing xylose. We reasoned that interventions that move the transcriptional state of cells using xylose toward that of cells producing large amounts of ethanol from glucose might improve xylose fermentation. Some of the interventions selected by NetSurgeon successfully promoted a fermentative transcriptional state in the absence of glucose, resulting in strains with a 2.7-fold increase in xylose import rates, a 4-fold improvement in xylose integration into central carbon metabolism, or a 1.3-fold increase in ethanol production rate. We conclude by presenting an integrated model of transcriptional regulation and metabolic flux that will enable future efforts aimed at improving xylose fermentation to prioritize functional regulators of central carbon metabolism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信