{"title":"动态海冰在用于古气候研究的简化大气环流模型中的作用","authors":"M. Adam, H. Andres, K. Rehfeld","doi":"10.4995/yic2021.2021.12383","DOIUrl":null,"url":null,"abstract":"AbstractObservational records provide a strong basis for constraining sea ice models within a narrow range of climate conditions. Given current trends away from these conditions, models need to be tested over a wider range of climate states. The past provides many such examples based on paleoclimate data, including abrupt tipping points. However, the millennial-duration of typical paleoclimatesimulations necessitates balancing the inclusion and sophistication of model processes against computational cost. We investigate the impact on climate mean states and variability of introducing sea ice dynamics into the simplified general circulation model PlaSim-LSG [1-3].Considering the technical constraints of PlaSim-LSG, we choose to integrate a modied version of the MITgcm's dynamical sea ice component [4, 5] into the model setup. We adapt the component to the structure and parallelization scheme of PlaSim-LSG, validate the physical consistency and stability of the component, and evaluate the impact of sea ice dynamics onto the simulated climate from decadal to millennial time scales. Specifically, we compare climatologies, variability and scaling of the extended model to control simulations of the preexisting setups, and quantify how additional sea ice dynamics affect well-known climatic biases of the PlaSim model family.With our extended PlaSim-LSG model we aim at capturing the key small-scale sea ice processes that are important to past climate tipping points while maintaining model efficiency for millennial simulations. Sea ice is a key component of coupled atmosphere-ocean processes that led to large-amplitude, abrupt climate variability in the past [6-8]. Therefore, the extended model can be usedto investigate the role of sea ice for such oscillations. This facilitates the understanding of processes that lead to current mismatches between palaeoclimate data and simulations, and that impact thesimulated surface climate variability [9].References[1] K. Fraedrich et al. Meteorol. Z. 14.3 (2005), 299-304. doi: 10.1127/0941-2948/2005/0043.[2] F. Lunkeit et al. Tech. rep. 2011. url: https://www.mi.uni-hamburg.de/en/arbeitsgruppen/theoretische-meteorologie/modelle/sources/psreferencemanual-1.pdf.[3] H. J. Andres et al. Clim. Past 15.4 (2019), 1621-1646. doi: 10.5194/cp-15-1621-2019.[4] J. Zhang et al. J. Geophys. Res. 102.4 (1997), 412-415.[5] M. Losch et al. Ocean Model. 33.1-2 (2010), 129-144. doi: 10.1016/j.ocemod.2009.12.008.[6] T. M. Dokken et al. Paleoceanography 28.3 (2013), 491-502. doi: 10.1002/palo.20042.[7] G. Vettoretti et al. Geophys. Res. Lett. 43.10 (2016), 5336-5344. doi: 10.1002/2016GL068891.[8] C. Li et al. Quat. Sci. Rev. 203 (2019), 1-20. doi: 10.1016/j.quascirev.2018.10.031.[9] N. Weitzel et al. presented at Fall Meeting AGU. 2020. url: https://agu.confex.com/agu/fm20/webprogram/Paper739241.html.","PeriodicalId":406819,"journal":{"name":"Proceedings of the YIC 2021 - VI ECCOMAS Young Investigators Conference","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The role of dynamic sea ice in a simplified general circulation model used for palaeoclimate studies\",\"authors\":\"M. Adam, H. Andres, K. Rehfeld\",\"doi\":\"10.4995/yic2021.2021.12383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractObservational records provide a strong basis for constraining sea ice models within a narrow range of climate conditions. Given current trends away from these conditions, models need to be tested over a wider range of climate states. The past provides many such examples based on paleoclimate data, including abrupt tipping points. However, the millennial-duration of typical paleoclimatesimulations necessitates balancing the inclusion and sophistication of model processes against computational cost. We investigate the impact on climate mean states and variability of introducing sea ice dynamics into the simplified general circulation model PlaSim-LSG [1-3].Considering the technical constraints of PlaSim-LSG, we choose to integrate a modied version of the MITgcm's dynamical sea ice component [4, 5] into the model setup. We adapt the component to the structure and parallelization scheme of PlaSim-LSG, validate the physical consistency and stability of the component, and evaluate the impact of sea ice dynamics onto the simulated climate from decadal to millennial time scales. Specifically, we compare climatologies, variability and scaling of the extended model to control simulations of the preexisting setups, and quantify how additional sea ice dynamics affect well-known climatic biases of the PlaSim model family.With our extended PlaSim-LSG model we aim at capturing the key small-scale sea ice processes that are important to past climate tipping points while maintaining model efficiency for millennial simulations. Sea ice is a key component of coupled atmosphere-ocean processes that led to large-amplitude, abrupt climate variability in the past [6-8]. Therefore, the extended model can be usedto investigate the role of sea ice for such oscillations. This facilitates the understanding of processes that lead to current mismatches between palaeoclimate data and simulations, and that impact thesimulated surface climate variability [9].References[1] K. Fraedrich et al. Meteorol. Z. 14.3 (2005), 299-304. doi: 10.1127/0941-2948/2005/0043.[2] F. Lunkeit et al. Tech. rep. 2011. url: https://www.mi.uni-hamburg.de/en/arbeitsgruppen/theoretische-meteorologie/modelle/sources/psreferencemanual-1.pdf.[3] H. J. Andres et al. Clim. Past 15.4 (2019), 1621-1646. doi: 10.5194/cp-15-1621-2019.[4] J. Zhang et al. J. Geophys. Res. 102.4 (1997), 412-415.[5] M. Losch et al. Ocean Model. 33.1-2 (2010), 129-144. doi: 10.1016/j.ocemod.2009.12.008.[6] T. M. Dokken et al. Paleoceanography 28.3 (2013), 491-502. doi: 10.1002/palo.20042.[7] G. Vettoretti et al. Geophys. Res. Lett. 43.10 (2016), 5336-5344. doi: 10.1002/2016GL068891.[8] C. Li et al. Quat. Sci. Rev. 203 (2019), 1-20. doi: 10.1016/j.quascirev.2018.10.031.[9] N. Weitzel et al. presented at Fall Meeting AGU. 2020. url: https://agu.confex.com/agu/fm20/webprogram/Paper739241.html.\",\"PeriodicalId\":406819,\"journal\":{\"name\":\"Proceedings of the YIC 2021 - VI ECCOMAS Young Investigators Conference\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the YIC 2021 - VI ECCOMAS Young Investigators Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4995/yic2021.2021.12383\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the YIC 2021 - VI ECCOMAS Young Investigators Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4995/yic2021.2021.12383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
摘要观测记录为在狭窄的气候条件范围内制约海冰模式提供了坚实的基础。鉴于目前偏离这些条件的趋势,需要在更大范围的气候状态下对模型进行检验。过去的古气候数据提供了许多这样的例子,包括突然的临界点。然而,典型的古气候模拟需要持续千年,这就需要在模型过程的包容性和复杂性与计算成本之间取得平衡。考虑到 PlaSim-LSG 的技术限制,我们选择将 MITgcm 的动态海冰组件[4, 5]的修正版集成到模型设置中。我们根据 PlaSim-LSG 的结构和并行化方案调整了该组件,验证了该组件的物理一致性和稳定性,并评估了海冰动力学对十年至千年时间尺度模拟气候的影响。具体来说,我们将扩展模型的气候学、变异性和规模与原有设置的控制模拟进行了比较,并量化了额外的海冰动力学如何影响 PlaSim 模型系列众所周知的气候偏差。海冰是大气-海洋耦合过程的关键组成部分,而大气-海洋耦合过程导致了过去大振幅的气候突变[6-8]。因此,扩展模式可用于研究海冰在这种振荡中的作用。参考文献[1] K. Fraedrich et al. Meteorol.14.3 (2005), 299-304. doi: 10.1127/0941-2948/2005/0043.[2] F. Lunkeit et al.2011. url: https://www.mi.uni-hamburg.de/en/arbeitsgruppen/theoretische-meteorologie/modelle/sources/psreferencemanual-1.pdf.[3] H. J. Andres et al. Clim.Doi: 10.5194/cp-15-1621-2019.[4] J. Zhang et al. J. Geophys.102.4 (1997), 412-415.[5] M. Losch et al. Ocean Model.33.1-2 (2010), 129-144. Doi: 10.1016/j.ocemod.2009.12.008.[6] T. M. Dokken et al. Paleoceanography 28.3 (2013), 491-502. Doi: 10.1002/palo.20042.[7] G. Vettoretti et al. Geophys.Res.Lett.43.10 (2016), 5336-5344. doi: 10.1002/2016GL068891.[8] C. Li et al.Quat.Sci. Rev. 203 (2019), 1-20. doi: 10.1016/j.quascirev.2018.10.031.[9] N. Weitzel et al. presented at Fall Meeting AGU.2020. url: https://agu.confex.com/agu/fm20/webprogram/Paper739241.html.
The role of dynamic sea ice in a simplified general circulation model used for palaeoclimate studies
AbstractObservational records provide a strong basis for constraining sea ice models within a narrow range of climate conditions. Given current trends away from these conditions, models need to be tested over a wider range of climate states. The past provides many such examples based on paleoclimate data, including abrupt tipping points. However, the millennial-duration of typical paleoclimatesimulations necessitates balancing the inclusion and sophistication of model processes against computational cost. We investigate the impact on climate mean states and variability of introducing sea ice dynamics into the simplified general circulation model PlaSim-LSG [1-3].Considering the technical constraints of PlaSim-LSG, we choose to integrate a modied version of the MITgcm's dynamical sea ice component [4, 5] into the model setup. We adapt the component to the structure and parallelization scheme of PlaSim-LSG, validate the physical consistency and stability of the component, and evaluate the impact of sea ice dynamics onto the simulated climate from decadal to millennial time scales. Specifically, we compare climatologies, variability and scaling of the extended model to control simulations of the preexisting setups, and quantify how additional sea ice dynamics affect well-known climatic biases of the PlaSim model family.With our extended PlaSim-LSG model we aim at capturing the key small-scale sea ice processes that are important to past climate tipping points while maintaining model efficiency for millennial simulations. Sea ice is a key component of coupled atmosphere-ocean processes that led to large-amplitude, abrupt climate variability in the past [6-8]. Therefore, the extended model can be usedto investigate the role of sea ice for such oscillations. This facilitates the understanding of processes that lead to current mismatches between palaeoclimate data and simulations, and that impact thesimulated surface climate variability [9].References[1] K. Fraedrich et al. Meteorol. Z. 14.3 (2005), 299-304. doi: 10.1127/0941-2948/2005/0043.[2] F. Lunkeit et al. Tech. rep. 2011. url: https://www.mi.uni-hamburg.de/en/arbeitsgruppen/theoretische-meteorologie/modelle/sources/psreferencemanual-1.pdf.[3] H. J. Andres et al. Clim. Past 15.4 (2019), 1621-1646. doi: 10.5194/cp-15-1621-2019.[4] J. Zhang et al. J. Geophys. Res. 102.4 (1997), 412-415.[5] M. Losch et al. Ocean Model. 33.1-2 (2010), 129-144. doi: 10.1016/j.ocemod.2009.12.008.[6] T. M. Dokken et al. Paleoceanography 28.3 (2013), 491-502. doi: 10.1002/palo.20042.[7] G. Vettoretti et al. Geophys. Res. Lett. 43.10 (2016), 5336-5344. doi: 10.1002/2016GL068891.[8] C. Li et al. Quat. Sci. Rev. 203 (2019), 1-20. doi: 10.1016/j.quascirev.2018.10.031.[9] N. Weitzel et al. presented at Fall Meeting AGU. 2020. url: https://agu.confex.com/agu/fm20/webprogram/Paper739241.html.