用于单细胞操作的电磁微操作系统

M. Gauthier, E. Piat
{"title":"用于单细胞操作的电磁微操作系统","authors":"M. Gauthier, E. Piat","doi":"10.1163/156856302322756450","DOIUrl":null,"url":null,"abstract":"Biological objects were micromanipulated with a magnetic microactuator. These objects are pushed with a small ferromagnetic particle whose size can be as small as 10 × 10 × 5 μm3. This particle is called the manipulator and is moved thanks to a permanent magnet. This magnetic device allows the manipulation of objects in an extremely confined space. As biological objects are fragile, the force applied on them must be controlled during the manipulation. The model we present allows to determine the force applied by the device on the manipulated object. Several experimental measurements are presented in order to validate the model.","PeriodicalId":150257,"journal":{"name":"Journal of Micromechatronics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":"{\"title\":\"An electromagnetic micromanipulation system for single-cell manipulation\",\"authors\":\"M. Gauthier, E. Piat\",\"doi\":\"10.1163/156856302322756450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biological objects were micromanipulated with a magnetic microactuator. These objects are pushed with a small ferromagnetic particle whose size can be as small as 10 × 10 × 5 μm3. This particle is called the manipulator and is moved thanks to a permanent magnet. This magnetic device allows the manipulation of objects in an extremely confined space. As biological objects are fragile, the force applied on them must be controlled during the manipulation. The model we present allows to determine the force applied by the device on the manipulated object. Several experimental measurements are presented in order to validate the model.\",\"PeriodicalId\":150257,\"journal\":{\"name\":\"Journal of Micromechatronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"60\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Micromechatronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1163/156856302322756450\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromechatronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1163/156856302322756450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 60

摘要

用磁性微驱动器对生物物体进行微操作。这些物体被一个小的铁磁粒子推动,其大小可以小到10 × 10 × 5 μm3。这个粒子被称为操纵者,它的移动要归功于一个永磁体。这种磁性装置可以在极其有限的空间内操纵物体。由于生物物体是脆弱的,在操作过程中必须控制施加在它们身上的力。我们提出的模型允许确定装置施加在被操纵物体上的力。为了验证该模型,给出了几个实验测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An electromagnetic micromanipulation system for single-cell manipulation
Biological objects were micromanipulated with a magnetic microactuator. These objects are pushed with a small ferromagnetic particle whose size can be as small as 10 × 10 × 5 μm3. This particle is called the manipulator and is moved thanks to a permanent magnet. This magnetic device allows the manipulation of objects in an extremely confined space. As biological objects are fragile, the force applied on them must be controlled during the manipulation. The model we present allows to determine the force applied by the device on the manipulated object. Several experimental measurements are presented in order to validate the model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信