用于高光谱解混的空间光谱自编码器网络

Yongfa Huang, Jie Li, Lin Qi, Ying Wang, Xinbo Gao
{"title":"用于高光谱解混的空间光谱自编码器网络","authors":"Yongfa Huang, Jie Li, Lin Qi, Ying Wang, Xinbo Gao","doi":"10.1109/IGARSS39084.2020.9324696","DOIUrl":null,"url":null,"abstract":"We present a spatial-spectral autoencoder (SSAE) for hyperspectral unmixing, including a net for endmember extraction (EENet) and a net for abundance estimation (AENet). The EENet exploits the spatial information in hyperspectral image by a “many to one” strategy, i.e., the abundance of a pixel is combined by the abundances of its adjacent pixels. The idea is based on the assumption: once an endmember is mixed in a pixel, it is mixed in the surrounding pixels with high probability. The strategy promotes a continuous and smooth spatial distribution of abundances, and it is more effective than the other methods for endmember extraction. Besides, to make full use of the rich spectral information and obtain more accurate abundances, we design an AENet, which applies the deep convolutional neural network to estimate the abundances with the endmembers acquired from the EENet. The experiments are conducted on two real datasets, which show the SSAE outperforms the state-of-the-art methods.","PeriodicalId":444267,"journal":{"name":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Spatial-Spectral Autoencoder Networks for Hyperspectral Unmixing\",\"authors\":\"Yongfa Huang, Jie Li, Lin Qi, Ying Wang, Xinbo Gao\",\"doi\":\"10.1109/IGARSS39084.2020.9324696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a spatial-spectral autoencoder (SSAE) for hyperspectral unmixing, including a net for endmember extraction (EENet) and a net for abundance estimation (AENet). The EENet exploits the spatial information in hyperspectral image by a “many to one” strategy, i.e., the abundance of a pixel is combined by the abundances of its adjacent pixels. The idea is based on the assumption: once an endmember is mixed in a pixel, it is mixed in the surrounding pixels with high probability. The strategy promotes a continuous and smooth spatial distribution of abundances, and it is more effective than the other methods for endmember extraction. Besides, to make full use of the rich spectral information and obtain more accurate abundances, we design an AENet, which applies the deep convolutional neural network to estimate the abundances with the endmembers acquired from the EENet. The experiments are conducted on two real datasets, which show the SSAE outperforms the state-of-the-art methods.\",\"PeriodicalId\":444267,\"journal\":{\"name\":\"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS39084.2020.9324696\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS39084.2020.9324696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

我们提出了一种用于高光谱解混的空间光谱自编码器(SSAE),包括端元提取网(EENet)和丰度估计网(AENet)。EENet通过“多对一”策略利用高光谱图像中的空间信息,即像素的丰度与其相邻像素的丰度相结合。这个想法是基于这样的假设:一旦一个端元混合在一个像素中,它就会以很高的概率混合在周围的像素中。该策略促进了丰度的连续和平滑的空间分布,比其他方法更有效地提取端元。此外,为了充分利用丰富的光谱信息,获得更准确的丰度,我们设计了一个AENet,利用从EENet中获取的端元,应用深度卷积神经网络对其进行丰度估计。在两个真实数据集上进行了实验,结果表明该方法优于目前最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatial-Spectral Autoencoder Networks for Hyperspectral Unmixing
We present a spatial-spectral autoencoder (SSAE) for hyperspectral unmixing, including a net for endmember extraction (EENet) and a net for abundance estimation (AENet). The EENet exploits the spatial information in hyperspectral image by a “many to one” strategy, i.e., the abundance of a pixel is combined by the abundances of its adjacent pixels. The idea is based on the assumption: once an endmember is mixed in a pixel, it is mixed in the surrounding pixels with high probability. The strategy promotes a continuous and smooth spatial distribution of abundances, and it is more effective than the other methods for endmember extraction. Besides, to make full use of the rich spectral information and obtain more accurate abundances, we design an AENet, which applies the deep convolutional neural network to estimate the abundances with the endmembers acquired from the EENet. The experiments are conducted on two real datasets, which show the SSAE outperforms the state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信