{"title":"大规模异构Java存储库的无阈值代码克隆检测","authors":"I. Keivanloo, Feng Zhang, Ying Zou","doi":"10.1109/SANER.2015.7081830","DOIUrl":null,"url":null,"abstract":"Code clones are unavoidable entities in software ecosystems. A variety of clone-detection algorithms are available for finding code clones. For Type-3 clone detection at method granularity (i.e., similar methods with changes in statements), dissimilarity threshold is one of the possible configuration parameters. Existing approaches use a single threshold to detect Type-3 clones across a repository. However, our study shows that to detect Type-3 clones at method granularity on a large-scale heterogeneous repository, multiple thresholds are often required. We find that the performance of clone detection improves if selecting different thresholds for various groups of clones in a heterogeneous repository (i.e., various applications). In this paper, we propose a threshold-free approach to detect Type-3 clones at method granularity across a large number of applications. Our approach uses an unsupervised learning algorithm, i.e., k-means, to determine true and false clones. We use a clone benchmark with 330,840 tagged clones from 24,824 open source Java projects for our study. We observe that our approach improves the performance significantly by 12% in terms of F-measure. Furthermore, our threshold-free approach eliminates the concern of practitioners about possible misconfiguration of Type-3 clone detection tools.","PeriodicalId":355949,"journal":{"name":"2015 IEEE 22nd International Conference on Software Analysis, Evolution, and Reengineering (SANER)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Threshold-free code clone detection for a large-scale heterogeneous Java repository\",\"authors\":\"I. Keivanloo, Feng Zhang, Ying Zou\",\"doi\":\"10.1109/SANER.2015.7081830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Code clones are unavoidable entities in software ecosystems. A variety of clone-detection algorithms are available for finding code clones. For Type-3 clone detection at method granularity (i.e., similar methods with changes in statements), dissimilarity threshold is one of the possible configuration parameters. Existing approaches use a single threshold to detect Type-3 clones across a repository. However, our study shows that to detect Type-3 clones at method granularity on a large-scale heterogeneous repository, multiple thresholds are often required. We find that the performance of clone detection improves if selecting different thresholds for various groups of clones in a heterogeneous repository (i.e., various applications). In this paper, we propose a threshold-free approach to detect Type-3 clones at method granularity across a large number of applications. Our approach uses an unsupervised learning algorithm, i.e., k-means, to determine true and false clones. We use a clone benchmark with 330,840 tagged clones from 24,824 open source Java projects for our study. We observe that our approach improves the performance significantly by 12% in terms of F-measure. Furthermore, our threshold-free approach eliminates the concern of practitioners about possible misconfiguration of Type-3 clone detection tools.\",\"PeriodicalId\":355949,\"journal\":{\"name\":\"2015 IEEE 22nd International Conference on Software Analysis, Evolution, and Reengineering (SANER)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 22nd International Conference on Software Analysis, Evolution, and Reengineering (SANER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SANER.2015.7081830\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 22nd International Conference on Software Analysis, Evolution, and Reengineering (SANER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SANER.2015.7081830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Threshold-free code clone detection for a large-scale heterogeneous Java repository
Code clones are unavoidable entities in software ecosystems. A variety of clone-detection algorithms are available for finding code clones. For Type-3 clone detection at method granularity (i.e., similar methods with changes in statements), dissimilarity threshold is one of the possible configuration parameters. Existing approaches use a single threshold to detect Type-3 clones across a repository. However, our study shows that to detect Type-3 clones at method granularity on a large-scale heterogeneous repository, multiple thresholds are often required. We find that the performance of clone detection improves if selecting different thresholds for various groups of clones in a heterogeneous repository (i.e., various applications). In this paper, we propose a threshold-free approach to detect Type-3 clones at method granularity across a large number of applications. Our approach uses an unsupervised learning algorithm, i.e., k-means, to determine true and false clones. We use a clone benchmark with 330,840 tagged clones from 24,824 open source Java projects for our study. We observe that our approach improves the performance significantly by 12% in terms of F-measure. Furthermore, our threshold-free approach eliminates the concern of practitioners about possible misconfiguration of Type-3 clone detection tools.