分布式检测中的交互式融合:体系结构和性能分析

E. Akofor, Biao Chen
{"title":"分布式检测中的交互式融合:体系结构和性能分析","authors":"E. Akofor, Biao Chen","doi":"10.1109/ICASSP.2013.6638463","DOIUrl":null,"url":null,"abstract":"Within the Neyman-Pearson framework we investigate the effect of feedback in two-sensor tandem fusion networks with conditionally independent observations. While there is noticeable improvement in performance of the fixed sample size Neyman-Pearson (NP) test, it is shown that feedback has no effect on the asymptotic performance characterized by the Kullback-Leibler (KL) distance. The result can be extended to an interactive fusion system where the fusion center and the sensor may undergo multiple steps of interactions.","PeriodicalId":183968,"journal":{"name":"2013 IEEE International Conference on Acoustics, Speech and Signal Processing","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Interactive fusion in distributed detection: Architecture and performance analysis\",\"authors\":\"E. Akofor, Biao Chen\",\"doi\":\"10.1109/ICASSP.2013.6638463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Within the Neyman-Pearson framework we investigate the effect of feedback in two-sensor tandem fusion networks with conditionally independent observations. While there is noticeable improvement in performance of the fixed sample size Neyman-Pearson (NP) test, it is shown that feedback has no effect on the asymptotic performance characterized by the Kullback-Leibler (KL) distance. The result can be extended to an interactive fusion system where the fusion center and the sensor may undergo multiple steps of interactions.\",\"PeriodicalId\":183968,\"journal\":{\"name\":\"2013 IEEE International Conference on Acoustics, Speech and Signal Processing\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Acoustics, Speech and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2013.6638463\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Acoustics, Speech and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2013.6638463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在Neyman-Pearson框架内,我们研究了反馈在条件独立观测的双传感器串联融合网络中的作用。虽然固定样本量的Neyman-Pearson (NP)检验的性能有了明显的改善,但研究表明,反馈对以Kullback-Leibler (KL)距离为特征的渐近性能没有影响。该结果可推广到融合中心和传感器可经历多步相互作用的交互融合系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interactive fusion in distributed detection: Architecture and performance analysis
Within the Neyman-Pearson framework we investigate the effect of feedback in two-sensor tandem fusion networks with conditionally independent observations. While there is noticeable improvement in performance of the fixed sample size Neyman-Pearson (NP) test, it is shown that feedback has no effect on the asymptotic performance characterized by the Kullback-Leibler (KL) distance. The result can be extended to an interactive fusion system where the fusion center and the sensor may undergo multiple steps of interactions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信