深海生物膜传感器

E. Diler, N. Larché, D. Thierry, Y. Degres
{"title":"深海生物膜传感器","authors":"E. Diler, N. Larché, D. Thierry, Y. Degres","doi":"10.1109/SSCO.2014.7000368","DOIUrl":null,"url":null,"abstract":"In natural seawater, surfaces will be rapidly covered by microorganisms which form a thin film called biofilm. It is now generally admitted that biofilms may affect the electrochemical behavior of metals and alloys and thereby may accelerate the corrosion of the material. Biofilms formed in seawater around the World does not necessarily present the same aggressiveness in terms of corrosion risk, and recently some high alloy stainless steel corrosion failures were attributed to the particular aggressiveness of biofilms which form in tropical seawaters. In deep sea, the biofilm activity as well as the corrosion risk induced by these phenomena has to be assessed. The objective of the present study was to develop an autonomous sensor able to characterize seawater biofilms through their electrochemical effects on stainless steel surface. The sensor is able to in-situ detect the potential ennoblement and to quantify the cathodic reduction efficiency of biofilmed stainless steel, which is a major parameter to quantify the risk of corrosion propagation on these alloys, as well as the bacterial presence and activity. This sensor will be able to be deployed down to 3000 m depth for long term measurements.","PeriodicalId":345550,"journal":{"name":"2014 IEEE Sensor Systems for a Changing Ocean (SSCO).","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Biofilm sensor for deep sea\",\"authors\":\"E. Diler, N. Larché, D. Thierry, Y. Degres\",\"doi\":\"10.1109/SSCO.2014.7000368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In natural seawater, surfaces will be rapidly covered by microorganisms which form a thin film called biofilm. It is now generally admitted that biofilms may affect the electrochemical behavior of metals and alloys and thereby may accelerate the corrosion of the material. Biofilms formed in seawater around the World does not necessarily present the same aggressiveness in terms of corrosion risk, and recently some high alloy stainless steel corrosion failures were attributed to the particular aggressiveness of biofilms which form in tropical seawaters. In deep sea, the biofilm activity as well as the corrosion risk induced by these phenomena has to be assessed. The objective of the present study was to develop an autonomous sensor able to characterize seawater biofilms through their electrochemical effects on stainless steel surface. The sensor is able to in-situ detect the potential ennoblement and to quantify the cathodic reduction efficiency of biofilmed stainless steel, which is a major parameter to quantify the risk of corrosion propagation on these alloys, as well as the bacterial presence and activity. This sensor will be able to be deployed down to 3000 m depth for long term measurements.\",\"PeriodicalId\":345550,\"journal\":{\"name\":\"2014 IEEE Sensor Systems for a Changing Ocean (SSCO).\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Sensor Systems for a Changing Ocean (SSCO).\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCO.2014.7000368\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Sensor Systems for a Changing Ocean (SSCO).","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCO.2014.7000368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在天然海水中,表面会迅速被微生物覆盖,形成一种叫做生物膜的薄膜。现在人们普遍认为生物膜可能影响金属和合金的电化学行为,从而可能加速材料的腐蚀。世界各地海水中形成的生物膜在腐蚀风险方面不一定具有相同的侵略性,最近一些高合金不锈钢腐蚀失败归因于热带海水中形成的生物膜的特殊侵略性。在深海中,生物膜的活性以及这些现象引起的腐蚀风险必须进行评估。本研究的目的是开发一种能够通过海水生物膜在不锈钢表面的电化学作用来表征海水生物膜的自主传感器。该传感器能够原位检测潜在的强化,并量化生物膜不锈钢的阴极还原效率,这是量化这些合金腐蚀扩展风险以及细菌存在和活性的主要参数。该传感器将能够部署到3000米的深度进行长期测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biofilm sensor for deep sea
In natural seawater, surfaces will be rapidly covered by microorganisms which form a thin film called biofilm. It is now generally admitted that biofilms may affect the electrochemical behavior of metals and alloys and thereby may accelerate the corrosion of the material. Biofilms formed in seawater around the World does not necessarily present the same aggressiveness in terms of corrosion risk, and recently some high alloy stainless steel corrosion failures were attributed to the particular aggressiveness of biofilms which form in tropical seawaters. In deep sea, the biofilm activity as well as the corrosion risk induced by these phenomena has to be assessed. The objective of the present study was to develop an autonomous sensor able to characterize seawater biofilms through their electrochemical effects on stainless steel surface. The sensor is able to in-situ detect the potential ennoblement and to quantify the cathodic reduction efficiency of biofilmed stainless steel, which is a major parameter to quantify the risk of corrosion propagation on these alloys, as well as the bacterial presence and activity. This sensor will be able to be deployed down to 3000 m depth for long term measurements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信