结构化语义Web API模型学习与提取的分层RNN网络

Shengpeng Liu, Ying Li, Guangyu Sun, Binbin Fan, Shuiguang Deng
{"title":"结构化语义Web API模型学习与提取的分层RNN网络","authors":"Shengpeng Liu, Ying Li, Guangyu Sun, Binbin Fan, Shuiguang Deng","doi":"10.1109/ICWS.2017.85","DOIUrl":null,"url":null,"abstract":"RESTful Web APIs have no description files like WSDL in traditional Web service. Although some REST API definition models have been arising recently, there is still lacking in structured description format for existing large mounts of Web APIs. Almost all Web APIs are documented in semi-structured web pages, and these documentation formats are various for different sites. It's hard for machine to read the semantics of Web APIs. In this paper, we have proposed a novel hierarchical recurrent neural network to convert REST API documentation to structured machine-readable description format -- the Swagger REST API specification. The network extracts the Swagger defined attributes of a REST API from HTML web pages without any feature engineering. With the extracted API specifications, we built an API repository to index, search and compose Web APIs. Experiment showed that the hierarchical RNN model performed well even with only a few training samples.","PeriodicalId":235426,"journal":{"name":"2017 IEEE International Conference on Web Services (ICWS)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Hierarchical RNN Networks for Structured Semantic Web API Model Learning and Extraction\",\"authors\":\"Shengpeng Liu, Ying Li, Guangyu Sun, Binbin Fan, Shuiguang Deng\",\"doi\":\"10.1109/ICWS.2017.85\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"RESTful Web APIs have no description files like WSDL in traditional Web service. Although some REST API definition models have been arising recently, there is still lacking in structured description format for existing large mounts of Web APIs. Almost all Web APIs are documented in semi-structured web pages, and these documentation formats are various for different sites. It's hard for machine to read the semantics of Web APIs. In this paper, we have proposed a novel hierarchical recurrent neural network to convert REST API documentation to structured machine-readable description format -- the Swagger REST API specification. The network extracts the Swagger defined attributes of a REST API from HTML web pages without any feature engineering. With the extracted API specifications, we built an API repository to index, search and compose Web APIs. Experiment showed that the hierarchical RNN model performed well even with only a few training samples.\",\"PeriodicalId\":235426,\"journal\":{\"name\":\"2017 IEEE International Conference on Web Services (ICWS)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Web Services (ICWS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICWS.2017.85\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Web Services (ICWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWS.2017.85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

RESTful Web api没有像传统Web服务中的WSDL那样的描述文件。尽管最近出现了一些REST API定义模型,但对于现有的大量Web API,仍然缺乏结构化的描述格式。几乎所有的Web api都记录在半结构化的Web页面中,这些文档格式对于不同的站点是不同的。机器很难读懂Web api的语义。在本文中,我们提出了一种新的分层递归神经网络,将REST API文档转换为结构化的机器可读描述格式——Swagger REST API规范。该网络从HTML网页中提取Swagger定义的REST API属性,而不需要任何特征工程。使用提取的API规范,我们构建了一个API存储库,用于索引、搜索和组合Web API。实验表明,该模型在训练样本较少的情况下也能取得较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical RNN Networks for Structured Semantic Web API Model Learning and Extraction
RESTful Web APIs have no description files like WSDL in traditional Web service. Although some REST API definition models have been arising recently, there is still lacking in structured description format for existing large mounts of Web APIs. Almost all Web APIs are documented in semi-structured web pages, and these documentation formats are various for different sites. It's hard for machine to read the semantics of Web APIs. In this paper, we have proposed a novel hierarchical recurrent neural network to convert REST API documentation to structured machine-readable description format -- the Swagger REST API specification. The network extracts the Swagger defined attributes of a REST API from HTML web pages without any feature engineering. With the extracted API specifications, we built an API repository to index, search and compose Web APIs. Experiment showed that the hierarchical RNN model performed well even with only a few training samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信