S. Satake, G. Sorimachi, T. Kanai, J. Taniguchi, N. Unno
{"title":"微数字全息ptv光固化树脂光固化uv纳米压印的三维测量","authors":"S. Satake, G. Sorimachi, T. Kanai, J. Taniguchi, N. Unno","doi":"10.1115/1.4001854","DOIUrl":null,"url":null,"abstract":"High time-resolution flow field measurement in the glass plate with covered glass with two holes is performed by micro-DHPTV system. The glass plate with covered glass has two holes that are inside photo-curable resin. The particle measurement is performed during two seconds; the measurement time is covered for curing time. The theoretically curing time is estimated from the irradiation flux of UV source. Moreover, photo-curable resin with changing of temperature is measured to evaluate dependence of temperature. Consequently, the seeding particle tracking can be obtained instantaneously. The three-dimensional displacement from the tracking is mainly caused at the depth direction. The value is in good agreement with the theoretical displacement from UV irradiation flux. Moreover, it is found that the photo curing of the displacement appears to be proportional to increasing the temperature.","PeriodicalId":414963,"journal":{"name":"2008 Second International Conference on Thermal Issues in Emerging Technologies","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Three-dimensional measurements of photo curing with process with photo-curable resin for UV-nanoimprint by micro-digital-holographic-PTV\",\"authors\":\"S. Satake, G. Sorimachi, T. Kanai, J. Taniguchi, N. Unno\",\"doi\":\"10.1115/1.4001854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High time-resolution flow field measurement in the glass plate with covered glass with two holes is performed by micro-DHPTV system. The glass plate with covered glass has two holes that are inside photo-curable resin. The particle measurement is performed during two seconds; the measurement time is covered for curing time. The theoretically curing time is estimated from the irradiation flux of UV source. Moreover, photo-curable resin with changing of temperature is measured to evaluate dependence of temperature. Consequently, the seeding particle tracking can be obtained instantaneously. The three-dimensional displacement from the tracking is mainly caused at the depth direction. The value is in good agreement with the theoretical displacement from UV irradiation flux. Moreover, it is found that the photo curing of the displacement appears to be proportional to increasing the temperature.\",\"PeriodicalId\":414963,\"journal\":{\"name\":\"2008 Second International Conference on Thermal Issues in Emerging Technologies\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Second International Conference on Thermal Issues in Emerging Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4001854\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Second International Conference on Thermal Issues in Emerging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4001854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Three-dimensional measurements of photo curing with process with photo-curable resin for UV-nanoimprint by micro-digital-holographic-PTV
High time-resolution flow field measurement in the glass plate with covered glass with two holes is performed by micro-DHPTV system. The glass plate with covered glass has two holes that are inside photo-curable resin. The particle measurement is performed during two seconds; the measurement time is covered for curing time. The theoretically curing time is estimated from the irradiation flux of UV source. Moreover, photo-curable resin with changing of temperature is measured to evaluate dependence of temperature. Consequently, the seeding particle tracking can be obtained instantaneously. The three-dimensional displacement from the tracking is mainly caused at the depth direction. The value is in good agreement with the theoretical displacement from UV irradiation flux. Moreover, it is found that the photo curing of the displacement appears to be proportional to increasing the temperature.