MRAC:一种基于忆阻器的自适应缓存替换可重构框架

Ping Zhou, Bo Zhao, Youtao Zhang, Jun Yang, Yiran Chen
{"title":"MRAC:一种基于忆阻器的自适应缓存替换可重构框架","authors":"Ping Zhou, Bo Zhao, Youtao Zhang, Jun Yang, Yiran Chen","doi":"10.1109/PACT.2011.29","DOIUrl":null,"url":null,"abstract":"Memristor, a long postulated yet missing circuit element, has recently emerged as a promising device in non-volatile memory technologies. However, beyond its use as memory cell, it is challenging to integrate memristor in modern architectures for general purpose computation. In this paper we propose a non-conventional use of memristor and demonstrate its applicability to enhancing cache replacement policy. We design a memristor-based saturation counter which can track cache access history at low cost. Based on our counter design, we develop a cache replacement framework that is both reconfigurable and adaptive (MRAC). Our evaluation demonstrates MRAC's reconfigurability and adaptivity, which result in better performance and more robust performance improvement.","PeriodicalId":106423,"journal":{"name":"2011 International Conference on Parallel Architectures and Compilation Techniques","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"MRAC: A Memristor-based Reconfigurable Framework for Adaptive Cache Replacement\",\"authors\":\"Ping Zhou, Bo Zhao, Youtao Zhang, Jun Yang, Yiran Chen\",\"doi\":\"10.1109/PACT.2011.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Memristor, a long postulated yet missing circuit element, has recently emerged as a promising device in non-volatile memory technologies. However, beyond its use as memory cell, it is challenging to integrate memristor in modern architectures for general purpose computation. In this paper we propose a non-conventional use of memristor and demonstrate its applicability to enhancing cache replacement policy. We design a memristor-based saturation counter which can track cache access history at low cost. Based on our counter design, we develop a cache replacement framework that is both reconfigurable and adaptive (MRAC). Our evaluation demonstrates MRAC's reconfigurability and adaptivity, which result in better performance and more robust performance improvement.\",\"PeriodicalId\":106423,\"journal\":{\"name\":\"2011 International Conference on Parallel Architectures and Compilation Techniques\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Parallel Architectures and Compilation Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PACT.2011.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Parallel Architectures and Compilation Techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACT.2011.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

忆阻器是一种长期被认为缺失的电路元件,近年来在非易失性存储技术中成为一种很有前途的器件。然而,除了用作存储单元之外,将忆阻器集成到现代体系结构中用于通用计算是一项挑战。在本文中,我们提出了一种非传统的记忆电阻器的使用,并证明了它在增强缓存替换策略方面的适用性。设计了一种基于忆阻器的饱和计数器,以低成本跟踪高速缓存访问历史。基于我们的计数器设计,我们开发了一个可重构和自适应的缓存替换框架(MRAC)。我们的评估证明了MRAC的可重构性和自适应性,从而获得更好的性能和更稳健的性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MRAC: A Memristor-based Reconfigurable Framework for Adaptive Cache Replacement
Memristor, a long postulated yet missing circuit element, has recently emerged as a promising device in non-volatile memory technologies. However, beyond its use as memory cell, it is challenging to integrate memristor in modern architectures for general purpose computation. In this paper we propose a non-conventional use of memristor and demonstrate its applicability to enhancing cache replacement policy. We design a memristor-based saturation counter which can track cache access history at low cost. Based on our counter design, we develop a cache replacement framework that is both reconfigurable and adaptive (MRAC). Our evaluation demonstrates MRAC's reconfigurability and adaptivity, which result in better performance and more robust performance improvement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信