{"title":"区域分析和多态λ演算","authors":"A. Banerjee, N. Heintze, J. Riecke","doi":"10.1109/LICS.1999.782594","DOIUrl":null,"url":null,"abstract":"We show how to translate the region calculus of M. Tofte and J.P. Talpin (1997), a typed lambda calculus that can statically delimit the lifetimes of objects, into an extension of the polymorphic lambda calculus called F/sub #/. We give a denotational semantics of F/sub #/, and use it to give a simple and abstract proof of the correctness of memory deallocation.","PeriodicalId":352531,"journal":{"name":"Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Region analysis and the polymorphic lambda calculus\",\"authors\":\"A. Banerjee, N. Heintze, J. Riecke\",\"doi\":\"10.1109/LICS.1999.782594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show how to translate the region calculus of M. Tofte and J.P. Talpin (1997), a typed lambda calculus that can statically delimit the lifetimes of objects, into an extension of the polymorphic lambda calculus called F/sub #/. We give a denotational semantics of F/sub #/, and use it to give a simple and abstract proof of the correctness of memory deallocation.\",\"PeriodicalId\":352531,\"journal\":{\"name\":\"Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS.1999.782594\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.1999.782594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Region analysis and the polymorphic lambda calculus
We show how to translate the region calculus of M. Tofte and J.P. Talpin (1997), a typed lambda calculus that can statically delimit the lifetimes of objects, into an extension of the polymorphic lambda calculus called F/sub #/. We give a denotational semantics of F/sub #/, and use it to give a simple and abstract proof of the correctness of memory deallocation.