用有限的特征空间进行分类:通过拒绝错误分类来提高质量

W. Homenda, A. Jastrzębska, W. Pedrycz, Radosław Piliszek
{"title":"用有限的特征空间进行分类:通过拒绝错误分类来提高质量","authors":"W. Homenda, A. Jastrzębska, W. Pedrycz, Radosław Piliszek","doi":"10.1109/WICT.2014.7077322","DOIUrl":null,"url":null,"abstract":"Classification, especially in the case of a small space of features, is prone to errors. This is more important when it is costly to gain data from samples to calculate the values for futures. We study what effect limiting the space of features has on the performance of built classifiers and how the quality of classification can be improved by rejecting misclassified elements.","PeriodicalId":439852,"journal":{"name":"2014 4th World Congress on Information and Communication Technologies (WICT 2014)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Classification with a limited space of features: Improving quality by rejecting misclassifications\",\"authors\":\"W. Homenda, A. Jastrzębska, W. Pedrycz, Radosław Piliszek\",\"doi\":\"10.1109/WICT.2014.7077322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classification, especially in the case of a small space of features, is prone to errors. This is more important when it is costly to gain data from samples to calculate the values for futures. We study what effect limiting the space of features has on the performance of built classifiers and how the quality of classification can be improved by rejecting misclassified elements.\",\"PeriodicalId\":439852,\"journal\":{\"name\":\"2014 4th World Congress on Information and Communication Technologies (WICT 2014)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 4th World Congress on Information and Communication Technologies (WICT 2014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WICT.2014.7077322\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 4th World Congress on Information and Communication Technologies (WICT 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WICT.2014.7077322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

分类,特别是在特征空间很小的情况下,容易出现错误。当从样本中获取数据以计算期货价值的成本很高时,这一点更为重要。我们研究了限制特征空间对构建的分类器性能的影响,以及如何通过拒绝错误分类的元素来提高分类质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification with a limited space of features: Improving quality by rejecting misclassifications
Classification, especially in the case of a small space of features, is prone to errors. This is more important when it is costly to gain data from samples to calculate the values for futures. We study what effect limiting the space of features has on the performance of built classifiers and how the quality of classification can be improved by rejecting misclassified elements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信