J. Veres, R. Bringans, E. Chow, J. P. Lu, P. Mei, S. Ready, D. Schwartz, R. Street
{"title":"电子行业的增材制造“超越摩尔”","authors":"J. Veres, R. Bringans, E. Chow, J. P. Lu, P. Mei, S. Ready, D. Schwartz, R. Street","doi":"10.1109/IEDM.2016.7838481","DOIUrl":null,"url":null,"abstract":"Additive manufacturing and 3D printing are poised to reshape entire manufacturing value chains. To be truly disruptive, additive manufacturing has to move beyond shapes and colors. Novel printing technologies are beginning to emerge that enable conformal electronics and even printing with inks containing microchips. This in turn also creates new openings for the progress of electronics itself. Over the last 50 years silicon microelectronics advanced through shrinking device dimensions and packing more and more functionality into tiny spaces. Printing technologies open up exciting new ways of scaling electronics “Beyond Moore”, through the integration of micro and macro, creating new form factors, complex shapes, conformal devices and distributed systems. Printed, hybrid electronics systems will enable new classes of sensor systems, structural electronics and wearable devices, where the “system is the package”.","PeriodicalId":186544,"journal":{"name":"2016 IEEE International Electron Devices Meeting (IEDM)","volume":"16 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Additive manufacturing for electronics “Beyond Moore”\",\"authors\":\"J. Veres, R. Bringans, E. Chow, J. P. Lu, P. Mei, S. Ready, D. Schwartz, R. Street\",\"doi\":\"10.1109/IEDM.2016.7838481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Additive manufacturing and 3D printing are poised to reshape entire manufacturing value chains. To be truly disruptive, additive manufacturing has to move beyond shapes and colors. Novel printing technologies are beginning to emerge that enable conformal electronics and even printing with inks containing microchips. This in turn also creates new openings for the progress of electronics itself. Over the last 50 years silicon microelectronics advanced through shrinking device dimensions and packing more and more functionality into tiny spaces. Printing technologies open up exciting new ways of scaling electronics “Beyond Moore”, through the integration of micro and macro, creating new form factors, complex shapes, conformal devices and distributed systems. Printed, hybrid electronics systems will enable new classes of sensor systems, structural electronics and wearable devices, where the “system is the package”.\",\"PeriodicalId\":186544,\"journal\":{\"name\":\"2016 IEEE International Electron Devices Meeting (IEDM)\",\"volume\":\"16 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Electron Devices Meeting (IEDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM.2016.7838481\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2016.7838481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Additive manufacturing for electronics “Beyond Moore”
Additive manufacturing and 3D printing are poised to reshape entire manufacturing value chains. To be truly disruptive, additive manufacturing has to move beyond shapes and colors. Novel printing technologies are beginning to emerge that enable conformal electronics and even printing with inks containing microchips. This in turn also creates new openings for the progress of electronics itself. Over the last 50 years silicon microelectronics advanced through shrinking device dimensions and packing more and more functionality into tiny spaces. Printing technologies open up exciting new ways of scaling electronics “Beyond Moore”, through the integration of micro and macro, creating new form factors, complex shapes, conformal devices and distributed systems. Printed, hybrid electronics systems will enable new classes of sensor systems, structural electronics and wearable devices, where the “system is the package”.