时间图上网页排名的事后计算

M. Hossain, Erik Saule
{"title":"时间图上网页排名的事后计算","authors":"M. Hossain, Erik Saule","doi":"10.1145/3545008.3545055","DOIUrl":null,"url":null,"abstract":"Temporal graphs capture changes in relational data over time and have been of increasing interest to data analysts. Most research focuses on streaming algorithms that incrementally update an analysis to account for the changes in the graph. However, one can also be interested in understanding the nature of changes in the graph over time. In such a case, they perform a postmortem analysis on different points in time where all the data known in advance We study in this paper a postmortem analysis of Pagerank over-time on graphs that are defined by temporal relational event databases. A relation between two entities at a particular point in time will form an edge between these two entities and that will remain in the graph for a fixed period of time. While one can reuse a streaming algorithm for that purpose, leveraging the availability of all the data from the beginning can be beneficial. Postmortem analysis enables encoding the temporal graph with a more efficient graph representation. Also, it provides an additional level of parallelism since one can not only parallelize within a particular timestamp but also across different timestamps. We will show that depending on the properties of the temporal data, either parallelization can be better, and in some cases, a combination of both approaches is preferable. We experimentally show across 7 databases and across different temporal derivations of the graph that postmortem analysis can be between 50 times and 880 times faster than streaming analysis.","PeriodicalId":360504,"journal":{"name":"Proceedings of the 51st International Conference on Parallel Processing","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Postmortem Computation of Pagerank on Temporal Graphs\",\"authors\":\"M. Hossain, Erik Saule\",\"doi\":\"10.1145/3545008.3545055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Temporal graphs capture changes in relational data over time and have been of increasing interest to data analysts. Most research focuses on streaming algorithms that incrementally update an analysis to account for the changes in the graph. However, one can also be interested in understanding the nature of changes in the graph over time. In such a case, they perform a postmortem analysis on different points in time where all the data known in advance We study in this paper a postmortem analysis of Pagerank over-time on graphs that are defined by temporal relational event databases. A relation between two entities at a particular point in time will form an edge between these two entities and that will remain in the graph for a fixed period of time. While one can reuse a streaming algorithm for that purpose, leveraging the availability of all the data from the beginning can be beneficial. Postmortem analysis enables encoding the temporal graph with a more efficient graph representation. Also, it provides an additional level of parallelism since one can not only parallelize within a particular timestamp but also across different timestamps. We will show that depending on the properties of the temporal data, either parallelization can be better, and in some cases, a combination of both approaches is preferable. We experimentally show across 7 databases and across different temporal derivations of the graph that postmortem analysis can be between 50 times and 880 times faster than streaming analysis.\",\"PeriodicalId\":360504,\"journal\":{\"name\":\"Proceedings of the 51st International Conference on Parallel Processing\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 51st International Conference on Parallel Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3545008.3545055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 51st International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3545008.3545055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

时间图捕捉关系数据随时间的变化,数据分析人员对它越来越感兴趣。大多数研究集中在流式算法上,流式算法增量更新分析以解释图中的变化。然而,人们也可能对理解图表随时间变化的本质感兴趣。在这种情况下,他们在不同的时间点上执行事后分析,其中所有数据都是事先已知的。我们在本文中研究了由时间关系事件数据库定义的图上的Pagerank随时间的事后分析。两个实体在特定时间点上的关系将在这两个实体之间形成一条边,这条边将在图形中保留一段固定的时间。虽然可以为此目的重用流算法,但从一开始就利用所有数据的可用性可能是有益的。事后分析支持用更有效的图表示对时间图进行编码。此外,它还提供了额外的并行性,因为不仅可以在特定的时间戳内并行,还可以跨不同的时间戳并行。我们将说明,根据时态数据的属性,任何一种并行化都可能更好,在某些情况下,两种方法的组合更好。我们通过实验表明,在7个数据库和不同的时间衍生图中,死后分析可以比流分析快50到880倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Postmortem Computation of Pagerank on Temporal Graphs
Temporal graphs capture changes in relational data over time and have been of increasing interest to data analysts. Most research focuses on streaming algorithms that incrementally update an analysis to account for the changes in the graph. However, one can also be interested in understanding the nature of changes in the graph over time. In such a case, they perform a postmortem analysis on different points in time where all the data known in advance We study in this paper a postmortem analysis of Pagerank over-time on graphs that are defined by temporal relational event databases. A relation between two entities at a particular point in time will form an edge between these two entities and that will remain in the graph for a fixed period of time. While one can reuse a streaming algorithm for that purpose, leveraging the availability of all the data from the beginning can be beneficial. Postmortem analysis enables encoding the temporal graph with a more efficient graph representation. Also, it provides an additional level of parallelism since one can not only parallelize within a particular timestamp but also across different timestamps. We will show that depending on the properties of the temporal data, either parallelization can be better, and in some cases, a combination of both approaches is preferable. We experimentally show across 7 databases and across different temporal derivations of the graph that postmortem analysis can be between 50 times and 880 times faster than streaming analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信