{"title":"二十面体粒子的相位反演","authors":"R. Millane, W. Stroud","doi":"10.1364/srs.1995.rtub3","DOIUrl":null,"url":null,"abstract":"X-ray crystallography is a technique for determining the structures of molecules [1,2]. It involves irradiating a crystalline specimen of the molecule with a monochromatic beam of x-rays and measuring the resulting diffraction pattern. The complex amplitude of the diffracted x-rays is equal to the Fourier transform of the electron density in the crystalline specimen, and only the intensity, but not the phase, of the diffracted x-rays can be measured. Reconstruction of the electron density therefore constitutes a phase problem.","PeriodicalId":184407,"journal":{"name":"Signal Recovery and Synthesis","volume":"41 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase Retrieval for Icosahedral Particles\",\"authors\":\"R. Millane, W. Stroud\",\"doi\":\"10.1364/srs.1995.rtub3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"X-ray crystallography is a technique for determining the structures of molecules [1,2]. It involves irradiating a crystalline specimen of the molecule with a monochromatic beam of x-rays and measuring the resulting diffraction pattern. The complex amplitude of the diffracted x-rays is equal to the Fourier transform of the electron density in the crystalline specimen, and only the intensity, but not the phase, of the diffracted x-rays can be measured. Reconstruction of the electron density therefore constitutes a phase problem.\",\"PeriodicalId\":184407,\"journal\":{\"name\":\"Signal Recovery and Synthesis\",\"volume\":\"41 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Recovery and Synthesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/srs.1995.rtub3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Recovery and Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/srs.1995.rtub3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
X-ray crystallography is a technique for determining the structures of molecules [1,2]. It involves irradiating a crystalline specimen of the molecule with a monochromatic beam of x-rays and measuring the resulting diffraction pattern. The complex amplitude of the diffracted x-rays is equal to the Fourier transform of the electron density in the crystalline specimen, and only the intensity, but not the phase, of the diffracted x-rays can be measured. Reconstruction of the electron density therefore constitutes a phase problem.