基于群智能优化的支持向量机入侵检测

A. Enache, V. Patriciu
{"title":"基于群智能优化的支持向量机入侵检测","authors":"A. Enache, V. Patriciu","doi":"10.1109/SACI.2014.6840052","DOIUrl":null,"url":null,"abstract":"Intrusion Detection Systems(IDS) have become a necessary component of almost every security infrastructure. Recently, Support Vector Machines (SVM) has been employed to provide potential solutions for IDS. With its many variants for classification SVM is a state-of-the-art machine learning algorithm. However, the performance of SVM depends on selection of the appropriate parameters. In this paper we propose an IDS model based on Information Gain for feature selection combined with the SVM classifier. The parameters for SVM will be selected by a swarm intelligence algorithm (Particle Swarm Optimization or Artificial Bee Colony). We use the NSL-KDD data set and show that our model can achieve higher detection rate and lower false alarm rate than regular SVM.","PeriodicalId":163447,"journal":{"name":"2014 IEEE 9th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":"{\"title\":\"Intrusions detection based on Support Vector Machine optimized with swarm intelligence\",\"authors\":\"A. Enache, V. Patriciu\",\"doi\":\"10.1109/SACI.2014.6840052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intrusion Detection Systems(IDS) have become a necessary component of almost every security infrastructure. Recently, Support Vector Machines (SVM) has been employed to provide potential solutions for IDS. With its many variants for classification SVM is a state-of-the-art machine learning algorithm. However, the performance of SVM depends on selection of the appropriate parameters. In this paper we propose an IDS model based on Information Gain for feature selection combined with the SVM classifier. The parameters for SVM will be selected by a swarm intelligence algorithm (Particle Swarm Optimization or Artificial Bee Colony). We use the NSL-KDD data set and show that our model can achieve higher detection rate and lower false alarm rate than regular SVM.\",\"PeriodicalId\":163447,\"journal\":{\"name\":\"2014 IEEE 9th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"60\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 9th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SACI.2014.6840052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 9th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACI.2014.6840052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 60

摘要

入侵检测系统(IDS)已经成为几乎所有安全基础设施的必要组成部分。最近,支持向量机(SVM)被用来为入侵检测提供潜在的解决方案。支持向量机是一种最先进的机器学习算法,它有许多用于分类的变体。然而,支持向量机的性能取决于选择合适的参数。本文结合支持向量机分类器,提出了一种基于信息增益的特征选择IDS模型。支持向量机的参数将通过群体智能算法(粒子群优化或人工蜂群)来选择。我们使用NSL-KDD数据集,结果表明我们的模型比常规SVM具有更高的检测率和更低的虚警率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intrusions detection based on Support Vector Machine optimized with swarm intelligence
Intrusion Detection Systems(IDS) have become a necessary component of almost every security infrastructure. Recently, Support Vector Machines (SVM) has been employed to provide potential solutions for IDS. With its many variants for classification SVM is a state-of-the-art machine learning algorithm. However, the performance of SVM depends on selection of the appropriate parameters. In this paper we propose an IDS model based on Information Gain for feature selection combined with the SVM classifier. The parameters for SVM will be selected by a swarm intelligence algorithm (Particle Swarm Optimization or Artificial Bee Colony). We use the NSL-KDD data set and show that our model can achieve higher detection rate and lower false alarm rate than regular SVM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信