基于少量GPS浮动车的城市出行时间预测

Yongni Li, D. Gunopulos, Cewu Lu, L. Guibas
{"title":"基于少量GPS浮动车的城市出行时间预测","authors":"Yongni Li, D. Gunopulos, Cewu Lu, L. Guibas","doi":"10.1145/3139958.3139971","DOIUrl":null,"url":null,"abstract":"Predicting the travel time of a path is an important task in route planning and navigation applications. As more GPS floating car data has been collected to monitor urban traffic, GPS trajectories of floating cars have been frequently used to predict path travel time. However, most trajectory-based methods rely on deploying GPS devices and collect real-time data on a large taxi fleet, which can be expensive and unreliable in smaller cities. This work deals with the problem of predicting path travel time when only a small number of GPS floating cars are available. We developed an algorithm that learns local congestion patterns of a compact set of frequently shared paths from historical data. Given a travel time prediction query, we identify the current congestion patterns around the query path from recent trajectories, then infer its travel time in the near future. Experimental results using 10-15 taxis tracked for 11 months in urban areas of Shenzhen, China show that our prediction has on average 5.4 minutes of error on trips of duration 10-75 minutes. This result improves the baseline approach of using purely historical trajectories by 2-30% on regions with various degree of path regularity. It also outperforms a state-of-the-art travel time prediction method that uses both historical trajectories and real-time trajectories.","PeriodicalId":270649,"journal":{"name":"Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Urban Travel Time Prediction using a Small Number of GPS Floating Cars\",\"authors\":\"Yongni Li, D. Gunopulos, Cewu Lu, L. Guibas\",\"doi\":\"10.1145/3139958.3139971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predicting the travel time of a path is an important task in route planning and navigation applications. As more GPS floating car data has been collected to monitor urban traffic, GPS trajectories of floating cars have been frequently used to predict path travel time. However, most trajectory-based methods rely on deploying GPS devices and collect real-time data on a large taxi fleet, which can be expensive and unreliable in smaller cities. This work deals with the problem of predicting path travel time when only a small number of GPS floating cars are available. We developed an algorithm that learns local congestion patterns of a compact set of frequently shared paths from historical data. Given a travel time prediction query, we identify the current congestion patterns around the query path from recent trajectories, then infer its travel time in the near future. Experimental results using 10-15 taxis tracked for 11 months in urban areas of Shenzhen, China show that our prediction has on average 5.4 minutes of error on trips of duration 10-75 minutes. This result improves the baseline approach of using purely historical trajectories by 2-30% on regions with various degree of path regularity. It also outperforms a state-of-the-art travel time prediction method that uses both historical trajectories and real-time trajectories.\",\"PeriodicalId\":270649,\"journal\":{\"name\":\"Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3139958.3139971\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3139958.3139971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

路径运行时间预测是路线规划和导航应用中的一个重要任务。随着越来越多的GPS浮动车数据被用于城市交通监测,浮动车的GPS轨迹被频繁地用于预测路径行驶时间。然而,大多数基于轨迹的方法依赖于部署GPS设备并收集大型出租车车队的实时数据,这在较小的城市可能是昂贵且不可靠的。本文研究了当GPS浮车数量较少时的路径行进时间预测问题。我们开发了一种算法,可以从历史数据中学习一组紧凑的频繁共享路径的局部拥塞模式。给定一个旅行时间预测查询,我们从最近的轨迹中识别出查询路径周围的当前拥堵模式,然后推断其在不久的将来的旅行时间。在中国深圳市区对10-15辆出租车进行了11个月的跟踪实验,结果表明,我们的预测在10-75分钟的行程中平均有5.4分钟的误差。该结果将使用纯历史轨迹的基线方法在具有不同程度路径规则的区域上提高了2-30%。它还优于使用历史轨迹和实时轨迹的最先进的旅行时间预测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Urban Travel Time Prediction using a Small Number of GPS Floating Cars
Predicting the travel time of a path is an important task in route planning and navigation applications. As more GPS floating car data has been collected to monitor urban traffic, GPS trajectories of floating cars have been frequently used to predict path travel time. However, most trajectory-based methods rely on deploying GPS devices and collect real-time data on a large taxi fleet, which can be expensive and unreliable in smaller cities. This work deals with the problem of predicting path travel time when only a small number of GPS floating cars are available. We developed an algorithm that learns local congestion patterns of a compact set of frequently shared paths from historical data. Given a travel time prediction query, we identify the current congestion patterns around the query path from recent trajectories, then infer its travel time in the near future. Experimental results using 10-15 taxis tracked for 11 months in urban areas of Shenzhen, China show that our prediction has on average 5.4 minutes of error on trips of duration 10-75 minutes. This result improves the baseline approach of using purely historical trajectories by 2-30% on regions with various degree of path regularity. It also outperforms a state-of-the-art travel time prediction method that uses both historical trajectories and real-time trajectories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信