{"title":"set:通过主题分割增强的搜索","authors":"Mayank Bawa, G. Manku, P. Raghavan","doi":"10.1145/860435.860491","DOIUrl":null,"url":null,"abstract":"We present SETS, an architecture for efficient search in peer-to-peer networks, building upon ideas drawn from machine learning and social network theory. The key idea is to arrange participating sites in a topic-segmented overlay topology in which most connections are short-distance, connecting pairs of sites with similar content. Topically focused sets of sites are then joined together into a single network by long-distance links. Queries are matched and routed to only the topically closest regions. We discuss a variety of design issues and tradeoffs that an implementor of SETS would face. We show that SETS is efficient in network traffic and query processing load.","PeriodicalId":209809,"journal":{"name":"Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"199","resultStr":"{\"title\":\"SETS: search enhanced by topic segmentation\",\"authors\":\"Mayank Bawa, G. Manku, P. Raghavan\",\"doi\":\"10.1145/860435.860491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present SETS, an architecture for efficient search in peer-to-peer networks, building upon ideas drawn from machine learning and social network theory. The key idea is to arrange participating sites in a topic-segmented overlay topology in which most connections are short-distance, connecting pairs of sites with similar content. Topically focused sets of sites are then joined together into a single network by long-distance links. Queries are matched and routed to only the topically closest regions. We discuss a variety of design issues and tradeoffs that an implementor of SETS would face. We show that SETS is efficient in network traffic and query processing load.\",\"PeriodicalId\":209809,\"journal\":{\"name\":\"Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"199\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/860435.860491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/860435.860491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We present SETS, an architecture for efficient search in peer-to-peer networks, building upon ideas drawn from machine learning and social network theory. The key idea is to arrange participating sites in a topic-segmented overlay topology in which most connections are short-distance, connecting pairs of sites with similar content. Topically focused sets of sites are then joined together into a single network by long-distance links. Queries are matched and routed to only the topically closest regions. We discuss a variety of design issues and tradeoffs that an implementor of SETS would face. We show that SETS is efficient in network traffic and query processing load.