基于深度学习方法的冷水珊瑚水螅活动估计与监测

Jonas Osterloff, I. Nilssen, Johanna Jarnegren, P. Buhl-Mortensen, T. Nattkemper
{"title":"基于深度学习方法的冷水珊瑚水螅活动估计与监测","authors":"Jonas Osterloff, I. Nilssen, Johanna Jarnegren, P. Buhl-Mortensen, T. Nattkemper","doi":"10.1109/CVAUI.2016.013","DOIUrl":null,"url":null,"abstract":"Fixed underwater observatories (FUOs) equipped with a variety of sensors including cameras, allow long-term monitoring with a high temporal resolution of a limited area of interest. FUOs equipped with HD cameras enable in situ monitoring of biological activity, such as live cold-water corals on a level of detail down to individual polyps. We present a workflow which allows monitoring the activity of cold water coral polyps automatically from photos recorded at the FUO LoVe (Lofoten - Vesterålen). The workflow consists of three steps: First the manual polyp activity-level identification, carried out by three observers on a region of interest in 13 images to generate a gold standard. Second, the training of a convolutional neural network (CNN) on the gold standard to automate the polyp activity classification. Third, the computational activity classification is integrated into an algorithmic estimation of polyp activity in a region of interest. We present results obtained for an image series from April to November 2015 that shows interesting temporal behavior patterns correlating with other posterior measurements.","PeriodicalId":169345,"journal":{"name":"2016 ICPR 2nd Workshop on Computer Vision for Analysis of Underwater Imagery (CVAUI)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Polyp Activity Estimation and Monitoring for Cold Water Corals with a Deep Learning Approach\",\"authors\":\"Jonas Osterloff, I. Nilssen, Johanna Jarnegren, P. Buhl-Mortensen, T. Nattkemper\",\"doi\":\"10.1109/CVAUI.2016.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fixed underwater observatories (FUOs) equipped with a variety of sensors including cameras, allow long-term monitoring with a high temporal resolution of a limited area of interest. FUOs equipped with HD cameras enable in situ monitoring of biological activity, such as live cold-water corals on a level of detail down to individual polyps. We present a workflow which allows monitoring the activity of cold water coral polyps automatically from photos recorded at the FUO LoVe (Lofoten - Vesterålen). The workflow consists of three steps: First the manual polyp activity-level identification, carried out by three observers on a region of interest in 13 images to generate a gold standard. Second, the training of a convolutional neural network (CNN) on the gold standard to automate the polyp activity classification. Third, the computational activity classification is integrated into an algorithmic estimation of polyp activity in a region of interest. We present results obtained for an image series from April to November 2015 that shows interesting temporal behavior patterns correlating with other posterior measurements.\",\"PeriodicalId\":169345,\"journal\":{\"name\":\"2016 ICPR 2nd Workshop on Computer Vision for Analysis of Underwater Imagery (CVAUI)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 ICPR 2nd Workshop on Computer Vision for Analysis of Underwater Imagery (CVAUI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVAUI.2016.013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 ICPR 2nd Workshop on Computer Vision for Analysis of Underwater Imagery (CVAUI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVAUI.2016.013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

固定水下观测站(FUOs)配备了包括摄像机在内的各种传感器,可以对有限的感兴趣区域进行高时间分辨率的长期监测。配备高清摄像机的fuo可以现场监测生物活动,例如活的冷水珊瑚,详细到单个珊瑚虫。我们提出了一种工作流程,可以自动监测冷水珊瑚珊瑚虫的活动,这些活动是由在Lofoten - vester len的FUO LoVe拍摄的照片记录的。该工作流程包括三个步骤:首先是手动息肉活动水平识别,由三名观察员在13张图像中对感兴趣的区域进行识别,以生成金标准。其次,训练一个基于黄金标准的卷积神经网络(CNN)来实现对息肉活动的自动分类。第三,将计算活动分类集成到感兴趣区域息肉活动的算法估计中。我们展示了2015年4月至11月的一系列图像的结果,显示了与其他后验测量相关的有趣的时间行为模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polyp Activity Estimation and Monitoring for Cold Water Corals with a Deep Learning Approach
Fixed underwater observatories (FUOs) equipped with a variety of sensors including cameras, allow long-term monitoring with a high temporal resolution of a limited area of interest. FUOs equipped with HD cameras enable in situ monitoring of biological activity, such as live cold-water corals on a level of detail down to individual polyps. We present a workflow which allows monitoring the activity of cold water coral polyps automatically from photos recorded at the FUO LoVe (Lofoten - Vesterålen). The workflow consists of three steps: First the manual polyp activity-level identification, carried out by three observers on a region of interest in 13 images to generate a gold standard. Second, the training of a convolutional neural network (CNN) on the gold standard to automate the polyp activity classification. Third, the computational activity classification is integrated into an algorithmic estimation of polyp activity in a region of interest. We present results obtained for an image series from April to November 2015 that shows interesting temporal behavior patterns correlating with other posterior measurements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信