{"title":"用神经处理和主成分分析识别核反应堆中失效(裂缝)燃料棒","authors":"C. B. Teles, J. Seixas","doi":"10.1109/SBRN.2002.1181477","DOIUrl":null,"url":null,"abstract":"A possible way to detect failed (fissured) rods, within a nuclear fuel assembly, is sounding the rods with ultrasonic pulses and examining the received echo waveforms. The detection is performed by a multilayer feedforward neural classifier, trained according to the backpropagation algorithm. The classifier achieved a detection efficiency of 93% (for failed rods) with 3% as false-alarm probability. Data compaction through principal component analysis reduced the network's input vector to 1.5% of its original length, with no efficiency loss.","PeriodicalId":157186,"journal":{"name":"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Identification of failed (fissured) fuel rods in nuclear reactors using neural processing and principal component analysis\",\"authors\":\"C. B. Teles, J. Seixas\",\"doi\":\"10.1109/SBRN.2002.1181477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A possible way to detect failed (fissured) rods, within a nuclear fuel assembly, is sounding the rods with ultrasonic pulses and examining the received echo waveforms. The detection is performed by a multilayer feedforward neural classifier, trained according to the backpropagation algorithm. The classifier achieved a detection efficiency of 93% (for failed rods) with 3% as false-alarm probability. Data compaction through principal component analysis reduced the network's input vector to 1.5% of its original length, with no efficiency loss.\",\"PeriodicalId\":157186,\"journal\":{\"name\":\"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBRN.2002.1181477\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBRN.2002.1181477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Identification of failed (fissured) fuel rods in nuclear reactors using neural processing and principal component analysis
A possible way to detect failed (fissured) rods, within a nuclear fuel assembly, is sounding the rods with ultrasonic pulses and examining the received echo waveforms. The detection is performed by a multilayer feedforward neural classifier, trained according to the backpropagation algorithm. The classifier achieved a detection efficiency of 93% (for failed rods) with 3% as false-alarm probability. Data compaction through principal component analysis reduced the network's input vector to 1.5% of its original length, with no efficiency loss.