基于RISC-V软核CPU的国产FPGA实现CNN异构方案

Hailong Wu, Jindong Li, Xiang Chen
{"title":"基于RISC-V软核CPU的国产FPGA实现CNN异构方案","authors":"Hailong Wu, Jindong Li, Xiang Chen","doi":"10.1109/ICTA56932.2022.9963056","DOIUrl":null,"url":null,"abstract":"Field Programmable Gate Array (FPGA) has the characteristics of low power consumption, high performance and flexibility. Research on FPGA neural network acceleration is emerging, but most of the researches are based on foreign FPGA devices. In order to improve the current situation of domestic FPGA, a novel Convolutional neural networks (CNNs) accelerator for domestic FPGA equipped with lightweight RISC-V soft core is proposed. The peak performance of the proposed accelerator reaches 153.6 GOP/s, occupying only 14K LUTs (Look-Up-Table), 32 DRMs (Dedicated RAM Modules) and 208 APMs (Arithmetic Process Modules). The proposed accelerator has enough computing power for most of the Edge-AI applications and embedded systems, providing a possible AI inference acceleration solution for domestic FPGA.","PeriodicalId":325602,"journal":{"name":"2022 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementation of CNN Heterogeneous Scheme Based on Domestic FPGA with RISC-V Soft Core CPU\",\"authors\":\"Hailong Wu, Jindong Li, Xiang Chen\",\"doi\":\"10.1109/ICTA56932.2022.9963056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Field Programmable Gate Array (FPGA) has the characteristics of low power consumption, high performance and flexibility. Research on FPGA neural network acceleration is emerging, but most of the researches are based on foreign FPGA devices. In order to improve the current situation of domestic FPGA, a novel Convolutional neural networks (CNNs) accelerator for domestic FPGA equipped with lightweight RISC-V soft core is proposed. The peak performance of the proposed accelerator reaches 153.6 GOP/s, occupying only 14K LUTs (Look-Up-Table), 32 DRMs (Dedicated RAM Modules) and 208 APMs (Arithmetic Process Modules). The proposed accelerator has enough computing power for most of the Edge-AI applications and embedded systems, providing a possible AI inference acceleration solution for domestic FPGA.\",\"PeriodicalId\":325602,\"journal\":{\"name\":\"2022 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTA56932.2022.9963056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTA56932.2022.9963056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现场可编程门阵列(FPGA)具有低功耗、高性能和灵活的特点。FPGA神经网络加速的研究正在兴起,但大多数研究都是基于国外的FPGA器件。为了改善国产FPGA的现状,提出了一种搭载轻量级RISC-V软核的国产FPGA卷积神经网络加速器。该加速器的峰值性能达到153.6 GOP/s,仅占用14K LUTs(查找表),32个DRMs(专用RAM模块)和208个APMs(算术处理模块)。该加速器具有足够的计算能力,适用于大多数Edge-AI应用和嵌入式系统,为国内FPGA提供了一种可能的AI推理加速解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementation of CNN Heterogeneous Scheme Based on Domestic FPGA with RISC-V Soft Core CPU
Field Programmable Gate Array (FPGA) has the characteristics of low power consumption, high performance and flexibility. Research on FPGA neural network acceleration is emerging, but most of the researches are based on foreign FPGA devices. In order to improve the current situation of domestic FPGA, a novel Convolutional neural networks (CNNs) accelerator for domestic FPGA equipped with lightweight RISC-V soft core is proposed. The peak performance of the proposed accelerator reaches 153.6 GOP/s, occupying only 14K LUTs (Look-Up-Table), 32 DRMs (Dedicated RAM Modules) and 208 APMs (Arithmetic Process Modules). The proposed accelerator has enough computing power for most of the Edge-AI applications and embedded systems, providing a possible AI inference acceleration solution for domestic FPGA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信