Yasser Fadlallah, A. Aïssa-El-Bey, K. Amis, Dominique Pastor
{"title":"低复杂度检测器用于非常大的和大量的MIMO传输","authors":"Yasser Fadlallah, A. Aïssa-El-Bey, K. Amis, Dominique Pastor","doi":"10.1109/SPAWC.2015.7227038","DOIUrl":null,"url":null,"abstract":"Maximum-Likelihood (ML) joint detection has been proposed as an optimal strategy that detects simultaneously the transmitted signals. In very large multiple-input-multiple output (MIMO) systems, the ML detector becomes intractable due the computational cost that increases exponentially with the antenna dimensions. In this paper, we propose a relaxed ML detector based on an iterative decoding strategy that reduces the computational cost. We exploit the fact that the transmit constellation is discrete, and remodel the channel as a MIMO channel with sparse input belonging to the binary set {0, 1}. The sparsity property allows us to relax the ML problem as a quadratic minimization under linear and ℓ1-norm constraint. We then prove the equivalence of the relaxed problem to a convex optimization problem solvable in polynomial time. Simulation results illustrate the efficiency of the low-complexity proposed detector compared to other existing ones in very large and massive MIMO context.","PeriodicalId":211324,"journal":{"name":"2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Low-complexity detector for very large and massive MIMO transmission\",\"authors\":\"Yasser Fadlallah, A. Aïssa-El-Bey, K. Amis, Dominique Pastor\",\"doi\":\"10.1109/SPAWC.2015.7227038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Maximum-Likelihood (ML) joint detection has been proposed as an optimal strategy that detects simultaneously the transmitted signals. In very large multiple-input-multiple output (MIMO) systems, the ML detector becomes intractable due the computational cost that increases exponentially with the antenna dimensions. In this paper, we propose a relaxed ML detector based on an iterative decoding strategy that reduces the computational cost. We exploit the fact that the transmit constellation is discrete, and remodel the channel as a MIMO channel with sparse input belonging to the binary set {0, 1}. The sparsity property allows us to relax the ML problem as a quadratic minimization under linear and ℓ1-norm constraint. We then prove the equivalence of the relaxed problem to a convex optimization problem solvable in polynomial time. Simulation results illustrate the efficiency of the low-complexity proposed detector compared to other existing ones in very large and massive MIMO context.\",\"PeriodicalId\":211324,\"journal\":{\"name\":\"2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAWC.2015.7227038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2015.7227038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low-complexity detector for very large and massive MIMO transmission
Maximum-Likelihood (ML) joint detection has been proposed as an optimal strategy that detects simultaneously the transmitted signals. In very large multiple-input-multiple output (MIMO) systems, the ML detector becomes intractable due the computational cost that increases exponentially with the antenna dimensions. In this paper, we propose a relaxed ML detector based on an iterative decoding strategy that reduces the computational cost. We exploit the fact that the transmit constellation is discrete, and remodel the channel as a MIMO channel with sparse input belonging to the binary set {0, 1}. The sparsity property allows us to relax the ML problem as a quadratic minimization under linear and ℓ1-norm constraint. We then prove the equivalence of the relaxed problem to a convex optimization problem solvable in polynomial time. Simulation results illustrate the efficiency of the low-complexity proposed detector compared to other existing ones in very large and massive MIMO context.