基于知识蒸馏和人工图像生成的高效水下对接检测

Jalil Chavez-Galaviz, N. Mahmoudian
{"title":"基于知识蒸馏和人工图像生成的高效水下对接检测","authors":"Jalil Chavez-Galaviz, N. Mahmoudian","doi":"10.1109/AUV53081.2022.9965804","DOIUrl":null,"url":null,"abstract":"Underwater docking is a staged process in which the detection of the dock is crucial. It allows Autonomous Underwater Vehicles (AUVs) to recharge and transfer data, enabling long-term missions; recent work shows that deep learning can be used to robustly perform docking detection at the expense of a large amount of resources for deployment on embedded devices. This paper proposes a method to efficiently train a Convolutional Neural Network (CNN) to detect a docking station using knowledge distillation under the teacher-student architecture. Additionally, to augment the amount of data available for training, we use two methods to generate synthetic datasets, one utilizing a CycleGAN network and another using an Artistic Style transfer network. Furthermore, we show the benefit of using synthetic data during the training of the CNNs and compare the performance of the teacher and the student networks on actual underwater data.","PeriodicalId":148195,"journal":{"name":"2022 IEEE/OES Autonomous Underwater Vehicles Symposium (AUV)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Efficient Underwater Docking Detection using Knowledge Distillation and Artificial Image Generation\",\"authors\":\"Jalil Chavez-Galaviz, N. Mahmoudian\",\"doi\":\"10.1109/AUV53081.2022.9965804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Underwater docking is a staged process in which the detection of the dock is crucial. It allows Autonomous Underwater Vehicles (AUVs) to recharge and transfer data, enabling long-term missions; recent work shows that deep learning can be used to robustly perform docking detection at the expense of a large amount of resources for deployment on embedded devices. This paper proposes a method to efficiently train a Convolutional Neural Network (CNN) to detect a docking station using knowledge distillation under the teacher-student architecture. Additionally, to augment the amount of data available for training, we use two methods to generate synthetic datasets, one utilizing a CycleGAN network and another using an Artistic Style transfer network. Furthermore, we show the benefit of using synthetic data during the training of the CNNs and compare the performance of the teacher and the student networks on actual underwater data.\",\"PeriodicalId\":148195,\"journal\":{\"name\":\"2022 IEEE/OES Autonomous Underwater Vehicles Symposium (AUV)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/OES Autonomous Underwater Vehicles Symposium (AUV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AUV53081.2022.9965804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/OES Autonomous Underwater Vehicles Symposium (AUV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AUV53081.2022.9965804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

水下对接是一个阶段性的过程,其中船坞的探测是至关重要的。它允许自主水下航行器(auv)充电和传输数据,实现长期任务;最近的研究表明,深度学习可以用于健壮地执行对接检测,而代价是在嵌入式设备上部署大量资源。本文提出了一种在师生架构下,利用知识蒸馏的方法对卷积神经网络(CNN)进行高效训练以检测对接站。此外,为了增加可用于训练的数据量,我们使用两种方法来生成合成数据集,一种使用CycleGAN网络,另一种使用艺术风格转移网络。此外,我们展示了在cnn训练期间使用合成数据的好处,并比较了教师和学生网络在实际水下数据上的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Underwater Docking Detection using Knowledge Distillation and Artificial Image Generation
Underwater docking is a staged process in which the detection of the dock is crucial. It allows Autonomous Underwater Vehicles (AUVs) to recharge and transfer data, enabling long-term missions; recent work shows that deep learning can be used to robustly perform docking detection at the expense of a large amount of resources for deployment on embedded devices. This paper proposes a method to efficiently train a Convolutional Neural Network (CNN) to detect a docking station using knowledge distillation under the teacher-student architecture. Additionally, to augment the amount of data available for training, we use two methods to generate synthetic datasets, one utilizing a CycleGAN network and another using an Artistic Style transfer network. Furthermore, we show the benefit of using synthetic data during the training of the CNNs and compare the performance of the teacher and the student networks on actual underwater data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信