低频断层扫描的波形设计

D. Sego, H. Griffiths, M. Wicks
{"title":"低频断层扫描的波形设计","authors":"D. Sego, H. Griffiths, M. Wicks","doi":"10.1109/WDD.2010.5592595","DOIUrl":null,"url":null,"abstract":"There are multiple applications that would benefit from the ability to produce three dimensional, high resolution, imagery collected at low operating frequency; among them remote archeological survey of ruins through foliage, and searching for voids in collapsed structures and underground. High vertical resolution circular SAR requires the use of wide-to-ultra wideband waveforms, a problematic aspect in the modern RF spectral environment, particularly at lower frequencies. RF tomography offers the potential to yield high, 3-dimensional resolution using spectrally sparse, narrowband waveforms simultaneously with operation at frequencies that have demonstrated favorable penetration through intervening dielectric media. In this paper we explore this potential by evaluating minimal spatial support tomographic apertures combining diverse narrowband signals with the form (trajectory) of the monostatic collection aperture. Results are presented in terms of image quality metrics: those frequency combinations that jointly minimize peak and rms voxel sidelobe level, cardinal axis resolution length and voxel volume. It is shown that, generally, the frequency selection is a soft constraint in terms of the achievable resolution and image sidelobe levels; that the tomographic aperture with spatial sampling that is linearly continuous and substantially less than hemispherical yields high spatial resolution, and that there is interaction between the form/shape of the tomographic and the waveform set.","PeriodicalId":112343,"journal":{"name":"2010 International Waveform Diversity and Design Conference","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Waveform design for low frequency tomography\",\"authors\":\"D. Sego, H. Griffiths, M. Wicks\",\"doi\":\"10.1109/WDD.2010.5592595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are multiple applications that would benefit from the ability to produce three dimensional, high resolution, imagery collected at low operating frequency; among them remote archeological survey of ruins through foliage, and searching for voids in collapsed structures and underground. High vertical resolution circular SAR requires the use of wide-to-ultra wideband waveforms, a problematic aspect in the modern RF spectral environment, particularly at lower frequencies. RF tomography offers the potential to yield high, 3-dimensional resolution using spectrally sparse, narrowband waveforms simultaneously with operation at frequencies that have demonstrated favorable penetration through intervening dielectric media. In this paper we explore this potential by evaluating minimal spatial support tomographic apertures combining diverse narrowband signals with the form (trajectory) of the monostatic collection aperture. Results are presented in terms of image quality metrics: those frequency combinations that jointly minimize peak and rms voxel sidelobe level, cardinal axis resolution length and voxel volume. It is shown that, generally, the frequency selection is a soft constraint in terms of the achievable resolution and image sidelobe levels; that the tomographic aperture with spatial sampling that is linearly continuous and substantially less than hemispherical yields high spatial resolution, and that there is interaction between the form/shape of the tomographic and the waveform set.\",\"PeriodicalId\":112343,\"journal\":{\"name\":\"2010 International Waveform Diversity and Design Conference\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Waveform Diversity and Design Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WDD.2010.5592595\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Waveform Diversity and Design Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WDD.2010.5592595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

有多种应用将受益于以低工作频率收集的三维高分辨率图像的能力;其中包括通过树叶对废墟进行远程考古调查,以及在倒塌的建筑物和地下寻找空隙。高垂直分辨率圆形SAR需要使用宽到超宽带波形,这在现代RF频谱环境中是一个有问题的方面,特别是在较低频率下。射频层析成像提供了高三维分辨率的潜力,使用频谱稀疏的窄带波形,同时在已经证明有利于穿透介电介质的频率下进行操作。在本文中,我们通过评估最小空间支持层析孔径结合各种窄带信号与单采集孔径的形式(轨迹)来探索这种潜力。结果呈现在图像质量指标方面:那些共同最小化峰值和均方根体素副瓣水平的频率组合,基数轴分辨率长度和体素体积。结果表明,一般情况下,频率选择在可实现的分辨率和图像旁瓣电平方面是一种软约束;空间采样的层析孔径是线性连续的,基本上小于半球形,可以产生高空间分辨率,层析成像的形式/形状与波形集之间存在相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Waveform design for low frequency tomography
There are multiple applications that would benefit from the ability to produce three dimensional, high resolution, imagery collected at low operating frequency; among them remote archeological survey of ruins through foliage, and searching for voids in collapsed structures and underground. High vertical resolution circular SAR requires the use of wide-to-ultra wideband waveforms, a problematic aspect in the modern RF spectral environment, particularly at lower frequencies. RF tomography offers the potential to yield high, 3-dimensional resolution using spectrally sparse, narrowband waveforms simultaneously with operation at frequencies that have demonstrated favorable penetration through intervening dielectric media. In this paper we explore this potential by evaluating minimal spatial support tomographic apertures combining diverse narrowband signals with the form (trajectory) of the monostatic collection aperture. Results are presented in terms of image quality metrics: those frequency combinations that jointly minimize peak and rms voxel sidelobe level, cardinal axis resolution length and voxel volume. It is shown that, generally, the frequency selection is a soft constraint in terms of the achievable resolution and image sidelobe levels; that the tomographic aperture with spatial sampling that is linearly continuous and substantially less than hemispherical yields high spatial resolution, and that there is interaction between the form/shape of the tomographic and the waveform set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信