云环境下动态工作流调度的遗传规划超启发式高级启发式设计

Kirita-Rose Escott, Hui Ma, Gang Chen
{"title":"云环境下动态工作流调度的遗传规划超启发式高级启发式设计","authors":"Kirita-Rose Escott, Hui Ma, Gang Chen","doi":"10.1109/SSCI47803.2020.9308261","DOIUrl":null,"url":null,"abstract":"Workflow scheduling in the cloud is the process of allocating tasks to scarce cloud resources, with an optimal goal. This is often achieved by adopting an effective scheduling heuristic. Workflow scheduling in cloud is challenging due to the dynamic nature of the cloud, often existing works focus on static workflows, ignoring this challenge. Existing heuristics, such as MINMIN, focus mainly on one specific aspect of the scheduling problem. High-level heuristics are heuristics constructed from existing man-made heuristics. In this paper, we introduce a new and more realistic workflow scheduling problem that considers different kinds of workflows, cloud resources and high-level heuristics. We propose a High-Level Heuristic Dynamic Workflow Scheduling Genetic Programming (HLH-DSGP) algorithm to automatically design high-level heuristics for workflow scheduling to minimise the response time of dynamically arriving task in a workflow. Our proposed HLH-DSGP can work consistently well regardless of the size and pattern of workflows, or number of available cloud resources. It is evaluated using a popular benchmark dataset using the popular WorkflowSim simulator. Our experiments show that with high-level scheduling heuristics, designed by HLH-DSGP, we can jointly use several well-known heuristics to achieve a desirable balance among multiple aspects of the scheduling problem collectively, hence improving the scheduling performance.","PeriodicalId":413489,"journal":{"name":"2020 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Genetic Programming Hyper-Heuristic Approach to Design High-Level Heuristics for Dynamic Workflow Scheduling in Cloud\",\"authors\":\"Kirita-Rose Escott, Hui Ma, Gang Chen\",\"doi\":\"10.1109/SSCI47803.2020.9308261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Workflow scheduling in the cloud is the process of allocating tasks to scarce cloud resources, with an optimal goal. This is often achieved by adopting an effective scheduling heuristic. Workflow scheduling in cloud is challenging due to the dynamic nature of the cloud, often existing works focus on static workflows, ignoring this challenge. Existing heuristics, such as MINMIN, focus mainly on one specific aspect of the scheduling problem. High-level heuristics are heuristics constructed from existing man-made heuristics. In this paper, we introduce a new and more realistic workflow scheduling problem that considers different kinds of workflows, cloud resources and high-level heuristics. We propose a High-Level Heuristic Dynamic Workflow Scheduling Genetic Programming (HLH-DSGP) algorithm to automatically design high-level heuristics for workflow scheduling to minimise the response time of dynamically arriving task in a workflow. Our proposed HLH-DSGP can work consistently well regardless of the size and pattern of workflows, or number of available cloud resources. It is evaluated using a popular benchmark dataset using the popular WorkflowSim simulator. Our experiments show that with high-level scheduling heuristics, designed by HLH-DSGP, we can jointly use several well-known heuristics to achieve a desirable balance among multiple aspects of the scheduling problem collectively, hence improving the scheduling performance.\",\"PeriodicalId\":413489,\"journal\":{\"name\":\"2020 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI47803.2020.9308261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI47803.2020.9308261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

云中的工作流调度是将任务分配给稀缺的云资源的过程,具有最优目标。这通常是通过采用有效的调度启发式来实现的。由于云的动态性,云中的工作流调度具有挑战性,现有的工作通常侧重于静态工作流,而忽略了这一挑战。现有的启发式算法,如MINMIN,主要关注调度问题的一个特定方面。高级启发式是在现有的人工启发式基础上构建的启发式。在本文中,我们引入了一种新的更现实的工作流调度问题,该问题考虑了不同类型的工作流、云资源和高级启发式。提出了一种高阶启发式动态工作流调度遗传规划(HLH-DSGP)算法,用于自动设计工作流调度的高阶启发式算法,以最小化工作流中动态到达任务的响应时间。无论工作流的大小和模式,或可用云资源的数量如何,我们建议的HLH-DSGP都可以始终如一地工作。它是使用流行的WorkflowSim模拟器使用流行的基准数据集进行评估的。实验表明,利用HLH-DSGP设计的高级启发式算法,我们可以联合使用几种知名的启发式算法,共同实现调度问题的多个方面之间的理想平衡,从而提高调度性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Genetic Programming Hyper-Heuristic Approach to Design High-Level Heuristics for Dynamic Workflow Scheduling in Cloud
Workflow scheduling in the cloud is the process of allocating tasks to scarce cloud resources, with an optimal goal. This is often achieved by adopting an effective scheduling heuristic. Workflow scheduling in cloud is challenging due to the dynamic nature of the cloud, often existing works focus on static workflows, ignoring this challenge. Existing heuristics, such as MINMIN, focus mainly on one specific aspect of the scheduling problem. High-level heuristics are heuristics constructed from existing man-made heuristics. In this paper, we introduce a new and more realistic workflow scheduling problem that considers different kinds of workflows, cloud resources and high-level heuristics. We propose a High-Level Heuristic Dynamic Workflow Scheduling Genetic Programming (HLH-DSGP) algorithm to automatically design high-level heuristics for workflow scheduling to minimise the response time of dynamically arriving task in a workflow. Our proposed HLH-DSGP can work consistently well regardless of the size and pattern of workflows, or number of available cloud resources. It is evaluated using a popular benchmark dataset using the popular WorkflowSim simulator. Our experiments show that with high-level scheduling heuristics, designed by HLH-DSGP, we can jointly use several well-known heuristics to achieve a desirable balance among multiple aspects of the scheduling problem collectively, hence improving the scheduling performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信