算法透明度的空间维度:综述

Jayant Gupta, A. Long, C. Xu, Tian Tang, S. Shekhar
{"title":"算法透明度的空间维度:综述","authors":"Jayant Gupta, A. Long, C. Xu, Tian Tang, S. Shekhar","doi":"10.1145/3469830.3470898","DOIUrl":null,"url":null,"abstract":"Spatial data brings an important dimension to AI’s quest for algorithmic transparency. For example, data driven computer-aided policy-decisions use measures of segregation (e.g., dissimilarity index) or income-inequality (e.g., Gini index), and these measures are affected by space partitioning choice. This may lead policymakers to underestimate the level of inequality or segregation within a region. The problem stems from the fact that many segregation based analyses use aggregated census data but do not report result sensitivity to choice of spatial partitioning (e.g., census block, tract). Beyond the well-known Modifiable Areal Unit Problem, this paper shows (via mathematical proofs as well as case studies with census data and census based synthetic micro-population data) that values of many measures (e.g., Gini index, dissimilarity index) diminish monotonically with increasing spatial-unit size in a hierarchical space partitioning (e.g., block, block-group, tract), however the ranking based on spatially aggregated measures remain sensitive to the scale of spatial partitions (e.g., block, block group). This paper highlights the need for social scientists to report how rankings of inequality are affected by the choice of spatial partitions.","PeriodicalId":206910,"journal":{"name":"17th International Symposium on Spatial and Temporal Databases","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Spatial Dimensions of Algorithmic Transparency: A Summary\",\"authors\":\"Jayant Gupta, A. Long, C. Xu, Tian Tang, S. Shekhar\",\"doi\":\"10.1145/3469830.3470898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spatial data brings an important dimension to AI’s quest for algorithmic transparency. For example, data driven computer-aided policy-decisions use measures of segregation (e.g., dissimilarity index) or income-inequality (e.g., Gini index), and these measures are affected by space partitioning choice. This may lead policymakers to underestimate the level of inequality or segregation within a region. The problem stems from the fact that many segregation based analyses use aggregated census data but do not report result sensitivity to choice of spatial partitioning (e.g., census block, tract). Beyond the well-known Modifiable Areal Unit Problem, this paper shows (via mathematical proofs as well as case studies with census data and census based synthetic micro-population data) that values of many measures (e.g., Gini index, dissimilarity index) diminish monotonically with increasing spatial-unit size in a hierarchical space partitioning (e.g., block, block-group, tract), however the ranking based on spatially aggregated measures remain sensitive to the scale of spatial partitions (e.g., block, block group). This paper highlights the need for social scientists to report how rankings of inequality are affected by the choice of spatial partitions.\",\"PeriodicalId\":206910,\"journal\":{\"name\":\"17th International Symposium on Spatial and Temporal Databases\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"17th International Symposium on Spatial and Temporal Databases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3469830.3470898\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"17th International Symposium on Spatial and Temporal Databases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3469830.3470898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

空间数据为人工智能对算法透明度的追求带来了一个重要的维度。例如,数据驱动的计算机辅助决策使用隔离度量(例如,不相似指数)或收入不平等度量(例如,基尼指数),而这些度量受到空间划分选择的影响。这可能会导致政策制定者低估一个地区内部的不平等或隔离程度。这个问题源于这样一个事实,即许多基于隔离的分析使用汇总的人口普查数据,但没有报告结果对空间划分选择的敏感性(例如,人口普查块,地区)。除了众所周知的可修改面积单位问题之外,本文通过数学证明以及人口普查数据和基于人口普查的合成微人口数据的案例研究表明,在分层空间划分(例如块,块群,区域)中,许多度量(例如基尼指数,不相似指数)的值随着空间单元大小的增加而单调减小。然而,基于空间聚合措施的排名仍然对空间分区的规模(例如,块,块组)敏感。这篇论文强调了社会科学家报告不平等排名如何受到空间划分选择的影响的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatial Dimensions of Algorithmic Transparency: A Summary
Spatial data brings an important dimension to AI’s quest for algorithmic transparency. For example, data driven computer-aided policy-decisions use measures of segregation (e.g., dissimilarity index) or income-inequality (e.g., Gini index), and these measures are affected by space partitioning choice. This may lead policymakers to underestimate the level of inequality or segregation within a region. The problem stems from the fact that many segregation based analyses use aggregated census data but do not report result sensitivity to choice of spatial partitioning (e.g., census block, tract). Beyond the well-known Modifiable Areal Unit Problem, this paper shows (via mathematical proofs as well as case studies with census data and census based synthetic micro-population data) that values of many measures (e.g., Gini index, dissimilarity index) diminish monotonically with increasing spatial-unit size in a hierarchical space partitioning (e.g., block, block-group, tract), however the ranking based on spatially aggregated measures remain sensitive to the scale of spatial partitions (e.g., block, block group). This paper highlights the need for social scientists to report how rankings of inequality are affected by the choice of spatial partitions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信