基于聚类先验N- 1最小化的动态信号在线压缩分解

Huynh Van Luong, N. Deligiannis, Søren Forchhammer, André Kaup
{"title":"基于聚类先验N- 1最小化的动态信号在线压缩分解","authors":"Huynh Van Luong, N. Deligiannis, Søren Forchhammer, André Kaup","doi":"10.1109/SSP.2018.8450742","DOIUrl":null,"url":null,"abstract":"We introduce a compressive online decomposition via solving an ${n}$-$\\ell _{1}$ cluster-weighted minimization to decompose a sequence of data vectors into sparse and low-rank components. In contrast to conventional batch Robust Principal Component Analysis (RPCA)—which needs to access full data—our method processes a data vector of the sequence per time instance from a small number of measurements. The $n-\\ell _{1}$ cluster-weighted minimization promotes (i) the structure of the sparse components and (ii) their correlation with multiple previously-recovered sparse vectors via clustering and re-weighting iteratively. We establish guarantees on the number of measurements required for successful compressive decomposition under the assumption of slowly-varying low-rank components. Experimental results show that our guarantees are sharp and the proposed algorithm outperforms the state of the art.","PeriodicalId":330528,"journal":{"name":"2018 IEEE Statistical Signal Processing Workshop (SSP)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Compressive Online Decomposition of Dynamic Signals Via N-ℓ1 Minimization With Clustered Priors\",\"authors\":\"Huynh Van Luong, N. Deligiannis, Søren Forchhammer, André Kaup\",\"doi\":\"10.1109/SSP.2018.8450742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a compressive online decomposition via solving an ${n}$-$\\\\ell _{1}$ cluster-weighted minimization to decompose a sequence of data vectors into sparse and low-rank components. In contrast to conventional batch Robust Principal Component Analysis (RPCA)—which needs to access full data—our method processes a data vector of the sequence per time instance from a small number of measurements. The $n-\\\\ell _{1}$ cluster-weighted minimization promotes (i) the structure of the sparse components and (ii) their correlation with multiple previously-recovered sparse vectors via clustering and re-weighting iteratively. We establish guarantees on the number of measurements required for successful compressive decomposition under the assumption of slowly-varying low-rank components. Experimental results show that our guarantees are sharp and the proposed algorithm outperforms the state of the art.\",\"PeriodicalId\":330528,\"journal\":{\"name\":\"2018 IEEE Statistical Signal Processing Workshop (SSP)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Statistical Signal Processing Workshop (SSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSP.2018.8450742\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP.2018.8450742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们通过求解${n}$-$\ well _{1}$聚类加权最小化来引入压缩在线分解,将数据向量序列分解为稀疏的低秩分量。与需要访问完整数据的传统批量鲁棒主成分分析(RPCA)不同,我们的方法从少量测量中处理每个时间实例序列的数据向量。$n-\ well _{1}$聚类加权最小化通过聚类和迭代重新加权来提高(i)稀疏分量的结构和(ii)它们与多个先前恢复的稀疏向量的相关性。我们建立了在假设缓慢变化的低秩分量下成功压缩分解所需的测量数的保证。实验结果表明,我们的保证是清晰的,所提出的算法优于目前的技术水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compressive Online Decomposition of Dynamic Signals Via N-ℓ1 Minimization With Clustered Priors
We introduce a compressive online decomposition via solving an ${n}$-$\ell _{1}$ cluster-weighted minimization to decompose a sequence of data vectors into sparse and low-rank components. In contrast to conventional batch Robust Principal Component Analysis (RPCA)—which needs to access full data—our method processes a data vector of the sequence per time instance from a small number of measurements. The $n-\ell _{1}$ cluster-weighted minimization promotes (i) the structure of the sparse components and (ii) their correlation with multiple previously-recovered sparse vectors via clustering and re-weighting iteratively. We establish guarantees on the number of measurements required for successful compressive decomposition under the assumption of slowly-varying low-rank components. Experimental results show that our guarantees are sharp and the proposed algorithm outperforms the state of the art.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信