视频异常事件检测的无限隐马尔可夫模型和ISA特征

Iulian Pruteanu-Malinici, L. Carin
{"title":"视频异常事件检测的无限隐马尔可夫模型和ISA特征","authors":"Iulian Pruteanu-Malinici, L. Carin","doi":"10.1109/ICIP.2007.4379784","DOIUrl":null,"url":null,"abstract":"We address the problem of unusual-event detection in a video sequence. Invariant subspace analysis (ISA) is used to extract features from the video, and the time-evolving properties of these features are modeled via an infinite hidden Markov model (iHMM), which is trained using \"normal\"/\"typical\" video data. The iHMM automatically determines the proper number of HMM states, and it retains a full posterior density function on all model parameters. Anomalies (unusual events) are detected subsequently if a low likelihood is observed when associated sequential features are submitted to the trained iHMM. A hierarchical Dirichlet process (HDP) framework is employed in the formulation of the iHMM. The evaluation of posterior distributions for the iHMM is achieved in two ways: via MCMC and using a variational Bayes (VB) formulation.","PeriodicalId":131177,"journal":{"name":"2007 IEEE International Conference on Image Processing","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Infinite Hidden Markov Models and ISA Features for Unusual-Event Detection in Video\",\"authors\":\"Iulian Pruteanu-Malinici, L. Carin\",\"doi\":\"10.1109/ICIP.2007.4379784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the problem of unusual-event detection in a video sequence. Invariant subspace analysis (ISA) is used to extract features from the video, and the time-evolving properties of these features are modeled via an infinite hidden Markov model (iHMM), which is trained using \\\"normal\\\"/\\\"typical\\\" video data. The iHMM automatically determines the proper number of HMM states, and it retains a full posterior density function on all model parameters. Anomalies (unusual events) are detected subsequently if a low likelihood is observed when associated sequential features are submitted to the trained iHMM. A hierarchical Dirichlet process (HDP) framework is employed in the formulation of the iHMM. The evaluation of posterior distributions for the iHMM is achieved in two ways: via MCMC and using a variational Bayes (VB) formulation.\",\"PeriodicalId\":131177,\"journal\":{\"name\":\"2007 IEEE International Conference on Image Processing\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Conference on Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2007.4379784\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2007.4379784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们解决了视频序列中异常事件检测的问题。使用不变子空间分析(ISA)从视频中提取特征,并通过使用“正常”/“典型”视频数据训练的无限隐马尔可夫模型(iHMM)对这些特征的时间演化特性进行建模。iHMM自动确定HMM状态的适当数量,并对所有模型参数保留完整的后验密度函数。当相关的序列特征提交给训练后的iHMM时,如果观察到低可能性,则随后检测到异常(异常事件)。采用层次狄利克雷过程(HDP)框架构建iHMM。对iHMM的后验分布的评估有两种方式:通过MCMC和使用变分贝叶斯(VB)公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Infinite Hidden Markov Models and ISA Features for Unusual-Event Detection in Video
We address the problem of unusual-event detection in a video sequence. Invariant subspace analysis (ISA) is used to extract features from the video, and the time-evolving properties of these features are modeled via an infinite hidden Markov model (iHMM), which is trained using "normal"/"typical" video data. The iHMM automatically determines the proper number of HMM states, and it retains a full posterior density function on all model parameters. Anomalies (unusual events) are detected subsequently if a low likelihood is observed when associated sequential features are submitted to the trained iHMM. A hierarchical Dirichlet process (HDP) framework is employed in the formulation of the iHMM. The evaluation of posterior distributions for the iHMM is achieved in two ways: via MCMC and using a variational Bayes (VB) formulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信