辅助服务需求的可扩展模型预测控制

M. Alizadeh, A. Scaglione, G. Kesidis
{"title":"辅助服务需求的可扩展模型预测控制","authors":"M. Alizadeh, A. Scaglione, G. Kesidis","doi":"10.1109/SmartGridComm.2013.6688038","DOIUrl":null,"url":null,"abstract":"In this paper, we develop an integrated decision making framework for the planning and real-time control decisions made by a Load Serving Entity (LSE) providing ancillary services to the wholesale market. Due to the multi-settlement structure of the energy market, planning decisions by the LSE are naturally made at multiple temporal stages. The tight interdependence among decisions demands an integrated approach to minimize the overall costs of operation. In order to model the dynamics of the load at large-scales when making these decisions, we propose a classification-based model that captures the effect of scheduling decisions made for individual appliances at aggregate levels, with reasonable effort. To provide a tangible example of how this load aggregation technique can be applied, we study the case of Electric Vehicle (EV) charging in detail.","PeriodicalId":136434,"journal":{"name":"2013 IEEE International Conference on Smart Grid Communications (SmartGridComm)","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Scalable model predictive control of demand for ancillary services\",\"authors\":\"M. Alizadeh, A. Scaglione, G. Kesidis\",\"doi\":\"10.1109/SmartGridComm.2013.6688038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we develop an integrated decision making framework for the planning and real-time control decisions made by a Load Serving Entity (LSE) providing ancillary services to the wholesale market. Due to the multi-settlement structure of the energy market, planning decisions by the LSE are naturally made at multiple temporal stages. The tight interdependence among decisions demands an integrated approach to minimize the overall costs of operation. In order to model the dynamics of the load at large-scales when making these decisions, we propose a classification-based model that captures the effect of scheduling decisions made for individual appliances at aggregate levels, with reasonable effort. To provide a tangible example of how this load aggregation technique can be applied, we study the case of Electric Vehicle (EV) charging in detail.\",\"PeriodicalId\":136434,\"journal\":{\"name\":\"2013 IEEE International Conference on Smart Grid Communications (SmartGridComm)\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Smart Grid Communications (SmartGridComm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartGridComm.2013.6688038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Smart Grid Communications (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm.2013.6688038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

在本文中,我们开发了一个综合决策框架,用于为批发市场提供辅助服务的负荷服务实体(LSE)所做的规划和实时控制决策。由于能源市场的多结算结构,伦敦证券交易所的规划决策自然是在多个时间阶段进行的。决策之间的紧密相互依赖要求采用一种综合的方法来最小化操作的总成本。为了在做出这些决策时对大规模负载的动态进行建模,我们提出了一个基于分类的模型,通过合理的努力,该模型可以捕获在总体级别上为单个设备做出的调度决策的效果。为了提供一个具体的例子来说明这种负载聚合技术是如何应用的,我们详细研究了电动汽车(EV)充电的案例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalable model predictive control of demand for ancillary services
In this paper, we develop an integrated decision making framework for the planning and real-time control decisions made by a Load Serving Entity (LSE) providing ancillary services to the wholesale market. Due to the multi-settlement structure of the energy market, planning decisions by the LSE are naturally made at multiple temporal stages. The tight interdependence among decisions demands an integrated approach to minimize the overall costs of operation. In order to model the dynamics of the load at large-scales when making these decisions, we propose a classification-based model that captures the effect of scheduling decisions made for individual appliances at aggregate levels, with reasonable effort. To provide a tangible example of how this load aggregation technique can be applied, we study the case of Electric Vehicle (EV) charging in detail.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信