利用形状先验改进唇形分割

M. Yilmaz, Hakan Erdogan, M. Unel
{"title":"利用形状先验改进唇形分割","authors":"M. Yilmaz, Hakan Erdogan, M. Unel","doi":"10.1109/SIU.2010.5652772","DOIUrl":null,"url":null,"abstract":"Lip segmentation is an important problem which is necessary to be solved in many applications, especially in audio-visual speech recognition. In this paper, a level-set based method that utilizes adaptive color distributions and shape priors for lip segmentation is introduced. More precisely, an implicit curve representation which learns the color information of lip and non-lip points and shape information of lip regions from a training set is employed. The model can adapt itself to the image of interest using a coarse elliptical region. Extracted lip contour provides detailed information about the lip shape. We show that using shape priors improve the segmentation performance, especially the recall rate.","PeriodicalId":152297,"journal":{"name":"2010 IEEE 18th Signal Processing and Communications Applications Conference","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Using shape priors for improved lip segmentation\",\"authors\":\"M. Yilmaz, Hakan Erdogan, M. Unel\",\"doi\":\"10.1109/SIU.2010.5652772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lip segmentation is an important problem which is necessary to be solved in many applications, especially in audio-visual speech recognition. In this paper, a level-set based method that utilizes adaptive color distributions and shape priors for lip segmentation is introduced. More precisely, an implicit curve representation which learns the color information of lip and non-lip points and shape information of lip regions from a training set is employed. The model can adapt itself to the image of interest using a coarse elliptical region. Extracted lip contour provides detailed information about the lip shape. We show that using shape priors improve the segmentation performance, especially the recall rate.\",\"PeriodicalId\":152297,\"journal\":{\"name\":\"2010 IEEE 18th Signal Processing and Communications Applications Conference\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 18th Signal Processing and Communications Applications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU.2010.5652772\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 18th Signal Processing and Communications Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2010.5652772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

唇形分割是许多应用中必须解决的一个重要问题,尤其是在视听语音识别中。本文提出了一种基于水平集的自适应颜色分布和形状先验的唇形分割方法。更精确地说,采用隐式曲线表示,从训练集中学习唇点和非唇点的颜色信息和唇区域的形状信息。该模型利用粗椭圆区域对感兴趣的图像进行自适应。提取的唇形轮廓提供了唇形的详细信息。我们发现使用形状先验可以提高分割性能,特别是召回率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using shape priors for improved lip segmentation
Lip segmentation is an important problem which is necessary to be solved in many applications, especially in audio-visual speech recognition. In this paper, a level-set based method that utilizes adaptive color distributions and shape priors for lip segmentation is introduced. More precisely, an implicit curve representation which learns the color information of lip and non-lip points and shape information of lip regions from a training set is employed. The model can adapt itself to the image of interest using a coarse elliptical region. Extracted lip contour provides detailed information about the lip shape. We show that using shape priors improve the segmentation performance, especially the recall rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信