利用预先训练的声学特征提取器进行情感声乐爆发任务

Bagus Tris Atmaja, A. Sasou
{"title":"利用预先训练的声学特征提取器进行情感声乐爆发任务","authors":"Bagus Tris Atmaja, A. Sasou","doi":"10.23919/APSIPAASC55919.2022.9980083","DOIUrl":null,"url":null,"abstract":"Understanding humans' emotions is a challenge for computers. Nowadays, research on speech emotion recognition has been conducted progressively. Instead of a speech, affective information may lay on short vocal bursts (i.e., cry when sad). In this study, we evaluated a recent self-supervised learning model to extract acoustic embedding for affective vocal bursts tasks. There are four tasks investigated on both regression and classification problems. Using similar architectures, we found the effectiveness of using a pre-trained model over the baseline methods. The study is further expanded to evaluate the different number of seeds, patiences, and batch sizes on the performance of the four tasks.","PeriodicalId":382967,"journal":{"name":"2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","volume":"326 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Leveraging Pre-Trained Acoustic Feature Extractor For Affective Vocal Bursts Tasks\",\"authors\":\"Bagus Tris Atmaja, A. Sasou\",\"doi\":\"10.23919/APSIPAASC55919.2022.9980083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding humans' emotions is a challenge for computers. Nowadays, research on speech emotion recognition has been conducted progressively. Instead of a speech, affective information may lay on short vocal bursts (i.e., cry when sad). In this study, we evaluated a recent self-supervised learning model to extract acoustic embedding for affective vocal bursts tasks. There are four tasks investigated on both regression and classification problems. Using similar architectures, we found the effectiveness of using a pre-trained model over the baseline methods. The study is further expanded to evaluate the different number of seeds, patiences, and batch sizes on the performance of the four tasks.\",\"PeriodicalId\":382967,\"journal\":{\"name\":\"2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"volume\":\"326 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/APSIPAASC55919.2022.9980083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/APSIPAASC55919.2022.9980083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

理解人类的情感对计算机来说是一个挑战。目前,语音情感识别的研究已逐步展开。情感信息可能以短时间的声音爆发(例如,悲伤时哭泣)来代替演讲。在这项研究中,我们评估了最近的一种自监督学习模型,用于提取情感声爆发任务的声嵌入。在回归和分类问题上研究了四个任务。使用类似的架构,我们发现在基线方法上使用预训练模型的有效性。研究进一步扩展,以评估不同的种子数量,患者和批量大小对四项任务的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leveraging Pre-Trained Acoustic Feature Extractor For Affective Vocal Bursts Tasks
Understanding humans' emotions is a challenge for computers. Nowadays, research on speech emotion recognition has been conducted progressively. Instead of a speech, affective information may lay on short vocal bursts (i.e., cry when sad). In this study, we evaluated a recent self-supervised learning model to extract acoustic embedding for affective vocal bursts tasks. There are four tasks investigated on both regression and classification problems. Using similar architectures, we found the effectiveness of using a pre-trained model over the baseline methods. The study is further expanded to evaluate the different number of seeds, patiences, and batch sizes on the performance of the four tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信