数学常数近似形式验证的固定精度模式

Yves Bertot
{"title":"数学常数近似形式验证的固定精度模式","authors":"Yves Bertot","doi":"10.1145/2676724.2693172","DOIUrl":null,"url":null,"abstract":"We describe two approaches for the computation of mathematical constant approximations inside interactive theorem provers. These two approaches share the same basis of fixed point computation and differ only in the way the proofs of correctness of the approximations are described. The first approach performs interval computations, while the second approach relies on bounding errors, for example with the help of derivatives. As an illustration, we show how to describe good approximations of the logarithm function and we compute -- to a precision of a million decimals inside the proof system, with a guarantee that all digits up to the millionth decimal are correct. All these experiments are performed with the Coq system, but most of the steps should apply to any interactive theorem prover.","PeriodicalId":187702,"journal":{"name":"Proceedings of the 2015 Conference on Certified Programs and Proofs","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Fixed Precision Patterns for the Formal Verification of Mathematical Constant Approximations\",\"authors\":\"Yves Bertot\",\"doi\":\"10.1145/2676724.2693172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe two approaches for the computation of mathematical constant approximations inside interactive theorem provers. These two approaches share the same basis of fixed point computation and differ only in the way the proofs of correctness of the approximations are described. The first approach performs interval computations, while the second approach relies on bounding errors, for example with the help of derivatives. As an illustration, we show how to describe good approximations of the logarithm function and we compute -- to a precision of a million decimals inside the proof system, with a guarantee that all digits up to the millionth decimal are correct. All these experiments are performed with the Coq system, but most of the steps should apply to any interactive theorem prover.\",\"PeriodicalId\":187702,\"journal\":{\"name\":\"Proceedings of the 2015 Conference on Certified Programs and Proofs\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 Conference on Certified Programs and Proofs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2676724.2693172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 Conference on Certified Programs and Proofs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2676724.2693172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们描述了在交互定理证明中计算数学常数近似的两种方法。这两种方法在不动点计算的基础上是相同的,不同的只是对近似正确性的证明。第一种方法执行区间计算,而第二种方法依赖于边界误差,例如借助导数。作为一个例子,我们展示了如何描述对数函数的良好近似值,并在证明系统中计算到一百万小数点的精度,并保证直到百万位小数的所有数字都是正确的。所有这些实验都是用Coq系统执行的,但大多数步骤应该适用于任何交互式定理证明器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fixed Precision Patterns for the Formal Verification of Mathematical Constant Approximations
We describe two approaches for the computation of mathematical constant approximations inside interactive theorem provers. These two approaches share the same basis of fixed point computation and differ only in the way the proofs of correctness of the approximations are described. The first approach performs interval computations, while the second approach relies on bounding errors, for example with the help of derivatives. As an illustration, we show how to describe good approximations of the logarithm function and we compute -- to a precision of a million decimals inside the proof system, with a guarantee that all digits up to the millionth decimal are correct. All these experiments are performed with the Coq system, but most of the steps should apply to any interactive theorem prover.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信