{"title":"人在环:双指数概率分布函数的应用使人们能够量化人的因素的作用","authors":"E. Suhir","doi":"10.1504/IJHFMS.2017.10008109","DOIUrl":null,"url":null,"abstract":"The probabilistic predictive modelling approach in human-in-the-loop related aerospace problems enables one to predict, quantify, assure and even specify the probability of the favourable outcome of an aerospace mission or a situation, when the performance of the never perfect human, never 100%-reliable instrumentation (equipment), never absolutely predictable response of the object of control (aero- or space-craft), uncertain and often harsh environment, as well as the interaction (interfaces) of the above uncertainties, contribute jointly to the likelihood of such an outcome. As to the human factor, it includes two major aspects: human performance (error) and his/her state of health. While the reliability of the navigation instrumentation (equipment) could be evaluated using suitable and more or less well established modelling means, the role of the human factor, when quantification of the human role is critical, could be considered by using the double-exponential-probability-distribution-function (DEPDF).","PeriodicalId":417746,"journal":{"name":"International Journal of Human Factors Modelling and Simulation","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Human-in-the-loop: application of the double exponential probability distribution function enables one to quantify the role of the human factor\",\"authors\":\"E. Suhir\",\"doi\":\"10.1504/IJHFMS.2017.10008109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The probabilistic predictive modelling approach in human-in-the-loop related aerospace problems enables one to predict, quantify, assure and even specify the probability of the favourable outcome of an aerospace mission or a situation, when the performance of the never perfect human, never 100%-reliable instrumentation (equipment), never absolutely predictable response of the object of control (aero- or space-craft), uncertain and often harsh environment, as well as the interaction (interfaces) of the above uncertainties, contribute jointly to the likelihood of such an outcome. As to the human factor, it includes two major aspects: human performance (error) and his/her state of health. While the reliability of the navigation instrumentation (equipment) could be evaluated using suitable and more or less well established modelling means, the role of the human factor, when quantification of the human role is critical, could be considered by using the double-exponential-probability-distribution-function (DEPDF).\",\"PeriodicalId\":417746,\"journal\":{\"name\":\"International Journal of Human Factors Modelling and Simulation\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Human Factors Modelling and Simulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJHFMS.2017.10008109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Human Factors Modelling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJHFMS.2017.10008109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Human-in-the-loop: application of the double exponential probability distribution function enables one to quantify the role of the human factor
The probabilistic predictive modelling approach in human-in-the-loop related aerospace problems enables one to predict, quantify, assure and even specify the probability of the favourable outcome of an aerospace mission or a situation, when the performance of the never perfect human, never 100%-reliable instrumentation (equipment), never absolutely predictable response of the object of control (aero- or space-craft), uncertain and often harsh environment, as well as the interaction (interfaces) of the above uncertainties, contribute jointly to the likelihood of such an outcome. As to the human factor, it includes two major aspects: human performance (error) and his/her state of health. While the reliability of the navigation instrumentation (equipment) could be evaluated using suitable and more or less well established modelling means, the role of the human factor, when quantification of the human role is critical, could be considered by using the double-exponential-probability-distribution-function (DEPDF).