{"title":"认知无线电网络中集中式和分散式协同频谱感知:一种新方法","authors":"Nima Noorshams, M. Malboubi, A. Bahai","doi":"10.1109/SPAWC.2010.5670998","DOIUrl":null,"url":null,"abstract":"In this paper, the cooperative spectrum sensing is probabilistically modeled as a mixture of two Gaussian distributions and EM algorithm is applied for learning the parameters and classifying these two classes. Also, in order to exploit the dependencies of the states of the primary user in time, a Hidden Markov Model is used to improve the performance of the centralized spectrum sensing. Furthermore, a new decentralized cooperative spectrum sensing algorithm is proposed. In this case, the local information of secondary users are appropriately combined to guarantee a reliable communication. Our simulation results indicate the remarkable performance of the proposed cooperative sensing algorithms even in very low signal to noise ratios.","PeriodicalId":436215,"journal":{"name":"2010 IEEE 11th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"Centralized and decentralized cooperative spectrum sensing in cognitive radio networks: A novel approach\",\"authors\":\"Nima Noorshams, M. Malboubi, A. Bahai\",\"doi\":\"10.1109/SPAWC.2010.5670998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the cooperative spectrum sensing is probabilistically modeled as a mixture of two Gaussian distributions and EM algorithm is applied for learning the parameters and classifying these two classes. Also, in order to exploit the dependencies of the states of the primary user in time, a Hidden Markov Model is used to improve the performance of the centralized spectrum sensing. Furthermore, a new decentralized cooperative spectrum sensing algorithm is proposed. In this case, the local information of secondary users are appropriately combined to guarantee a reliable communication. Our simulation results indicate the remarkable performance of the proposed cooperative sensing algorithms even in very low signal to noise ratios.\",\"PeriodicalId\":436215,\"journal\":{\"name\":\"2010 IEEE 11th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 11th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAWC.2010.5670998\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 11th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2010.5670998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Centralized and decentralized cooperative spectrum sensing in cognitive radio networks: A novel approach
In this paper, the cooperative spectrum sensing is probabilistically modeled as a mixture of two Gaussian distributions and EM algorithm is applied for learning the parameters and classifying these two classes. Also, in order to exploit the dependencies of the states of the primary user in time, a Hidden Markov Model is used to improve the performance of the centralized spectrum sensing. Furthermore, a new decentralized cooperative spectrum sensing algorithm is proposed. In this case, the local information of secondary users are appropriately combined to guarantee a reliable communication. Our simulation results indicate the remarkable performance of the proposed cooperative sensing algorithms even in very low signal to noise ratios.