认知无线电网络中集中式和分散式协同频谱感知:一种新方法

Nima Noorshams, M. Malboubi, A. Bahai
{"title":"认知无线电网络中集中式和分散式协同频谱感知:一种新方法","authors":"Nima Noorshams, M. Malboubi, A. Bahai","doi":"10.1109/SPAWC.2010.5670998","DOIUrl":null,"url":null,"abstract":"In this paper, the cooperative spectrum sensing is probabilistically modeled as a mixture of two Gaussian distributions and EM algorithm is applied for learning the parameters and classifying these two classes. Also, in order to exploit the dependencies of the states of the primary user in time, a Hidden Markov Model is used to improve the performance of the centralized spectrum sensing. Furthermore, a new decentralized cooperative spectrum sensing algorithm is proposed. In this case, the local information of secondary users are appropriately combined to guarantee a reliable communication. Our simulation results indicate the remarkable performance of the proposed cooperative sensing algorithms even in very low signal to noise ratios.","PeriodicalId":436215,"journal":{"name":"2010 IEEE 11th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"Centralized and decentralized cooperative spectrum sensing in cognitive radio networks: A novel approach\",\"authors\":\"Nima Noorshams, M. Malboubi, A. Bahai\",\"doi\":\"10.1109/SPAWC.2010.5670998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the cooperative spectrum sensing is probabilistically modeled as a mixture of two Gaussian distributions and EM algorithm is applied for learning the parameters and classifying these two classes. Also, in order to exploit the dependencies of the states of the primary user in time, a Hidden Markov Model is used to improve the performance of the centralized spectrum sensing. Furthermore, a new decentralized cooperative spectrum sensing algorithm is proposed. In this case, the local information of secondary users are appropriately combined to guarantee a reliable communication. Our simulation results indicate the remarkable performance of the proposed cooperative sensing algorithms even in very low signal to noise ratios.\",\"PeriodicalId\":436215,\"journal\":{\"name\":\"2010 IEEE 11th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 11th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAWC.2010.5670998\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 11th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2010.5670998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

本文将协同频谱感知概率建模为两个高斯分布的混合分布,并应用EM算法对这两个高斯分布的参数进行学习和分类。此外,为了利用主用户状态在时间上的依赖关系,采用隐马尔可夫模型来提高集中频谱感知的性能。在此基础上,提出了一种新的分散协同频谱感知算法。在这种情况下,从端用户的本地信息被适当地组合在一起,保证了通信的可靠性。仿真结果表明,即使在很低的信噪比下,所提出的协同感知算法也具有显著的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Centralized and decentralized cooperative spectrum sensing in cognitive radio networks: A novel approach
In this paper, the cooperative spectrum sensing is probabilistically modeled as a mixture of two Gaussian distributions and EM algorithm is applied for learning the parameters and classifying these two classes. Also, in order to exploit the dependencies of the states of the primary user in time, a Hidden Markov Model is used to improve the performance of the centralized spectrum sensing. Furthermore, a new decentralized cooperative spectrum sensing algorithm is proposed. In this case, the local information of secondary users are appropriately combined to guarantee a reliable communication. Our simulation results indicate the remarkable performance of the proposed cooperative sensing algorithms even in very low signal to noise ratios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信