用甘贝尔公式和经验边际分布估计分布算法

Lifang Wang, Xiaodong Guo, J. Zeng, Yi Hong
{"title":"用甘贝尔公式和经验边际分布估计分布算法","authors":"Lifang Wang, Xiaodong Guo, J. Zeng, Yi Hong","doi":"10.1109/IWACI.2010.5585135","DOIUrl":null,"url":null,"abstract":"Estimation of Distribution Algorithms (EDAs) is a novel evolutionary algorithm originated from Genetic Algorithms. The probability distribution model of promising population is estimated iteratively in EDAs, and the new generation is sampled from the estimated model. An EDA with Gumbel copula is proposed in this paper. In order to estimating the joint, the empirical margins of each variable are estimated separately, and the relationship of variables is presented by Gumbel copula. On the ground of copula theory, the joint is the composite function of the copula and the margins. This algorithm simplifies the operator to estimating the multivariate distribution. The experimental results show that the proposed algorithm is equivalent to some conventional continuous EDAs in performance.","PeriodicalId":189187,"journal":{"name":"Third International Workshop on Advanced Computational Intelligence","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Using Gumbel copula and empirical marginal distribution in Estimation of Distribution Algorithm\",\"authors\":\"Lifang Wang, Xiaodong Guo, J. Zeng, Yi Hong\",\"doi\":\"10.1109/IWACI.2010.5585135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimation of Distribution Algorithms (EDAs) is a novel evolutionary algorithm originated from Genetic Algorithms. The probability distribution model of promising population is estimated iteratively in EDAs, and the new generation is sampled from the estimated model. An EDA with Gumbel copula is proposed in this paper. In order to estimating the joint, the empirical margins of each variable are estimated separately, and the relationship of variables is presented by Gumbel copula. On the ground of copula theory, the joint is the composite function of the copula and the margins. This algorithm simplifies the operator to estimating the multivariate distribution. The experimental results show that the proposed algorithm is equivalent to some conventional continuous EDAs in performance.\",\"PeriodicalId\":189187,\"journal\":{\"name\":\"Third International Workshop on Advanced Computational Intelligence\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Third International Workshop on Advanced Computational Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWACI.2010.5585135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Workshop on Advanced Computational Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWACI.2010.5585135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

分布估计算法(EDAs)是一种起源于遗传算法的新型进化算法。在eda中迭代估计有希望种群的概率分布模型,并从估计的模型中抽样新一代。本文提出了一种带有Gumbel联结的EDA。为了估计联合,分别估计每个变量的经验裕度,并用Gumbel copula表示变量之间的关系。根据联结理论,联结是联结与边缘的复合函数。该算法将算子简化为多元分布的估计。实验结果表明,该算法的性能与传统的连续EDAs相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Gumbel copula and empirical marginal distribution in Estimation of Distribution Algorithm
Estimation of Distribution Algorithms (EDAs) is a novel evolutionary algorithm originated from Genetic Algorithms. The probability distribution model of promising population is estimated iteratively in EDAs, and the new generation is sampled from the estimated model. An EDA with Gumbel copula is proposed in this paper. In order to estimating the joint, the empirical margins of each variable are estimated separately, and the relationship of variables is presented by Gumbel copula. On the ground of copula theory, the joint is the composite function of the copula and the margins. This algorithm simplifies the operator to estimating the multivariate distribution. The experimental results show that the proposed algorithm is equivalent to some conventional continuous EDAs in performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信