高维空间的快速近邻搜索

Stefan Berchtold, Bernhard Ertl, D. Keim, H. Kriegel, T. Seidl
{"title":"高维空间的快速近邻搜索","authors":"Stefan Berchtold, Bernhard Ertl, D. Keim, H. Kriegel, T. Seidl","doi":"10.1109/ICDE.1998.655779","DOIUrl":null,"url":null,"abstract":"Similarity search in multimedia databases requires an efficient support of nearest neighbor search on a large set of high dimensional points as a basic operation for query processing. As recent theoretical results show, state of the art approaches to nearest neighbor search are not efficient in higher dimensions. In our new approach, we therefore precompute the result of any nearest neighbor search which corresponds to a computation of the voronoi cell of each data point. In a second step, we store the voronoi cells in an index structure efficient for high dimensional data spaces. As a result, nearest neighbor search corresponds to a simple point query on the index structure. Although our technique is based on a precomputation of the solution space, it is dynamic, i.e. it supports insertions of new data points. An extensive experimental evaluation of our technique demonstrates the high efficiency for uniformly distributed as well as real data. We obtained a significant reduction of the search time compared to nearest neighbor search in the X tree (up to a factor of 4).","PeriodicalId":264926,"journal":{"name":"Proceedings 14th International Conference on Data Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1998-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"173","resultStr":"{\"title\":\"Fast nearest neighbor search in high-dimensional space\",\"authors\":\"Stefan Berchtold, Bernhard Ertl, D. Keim, H. Kriegel, T. Seidl\",\"doi\":\"10.1109/ICDE.1998.655779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Similarity search in multimedia databases requires an efficient support of nearest neighbor search on a large set of high dimensional points as a basic operation for query processing. As recent theoretical results show, state of the art approaches to nearest neighbor search are not efficient in higher dimensions. In our new approach, we therefore precompute the result of any nearest neighbor search which corresponds to a computation of the voronoi cell of each data point. In a second step, we store the voronoi cells in an index structure efficient for high dimensional data spaces. As a result, nearest neighbor search corresponds to a simple point query on the index structure. Although our technique is based on a precomputation of the solution space, it is dynamic, i.e. it supports insertions of new data points. An extensive experimental evaluation of our technique demonstrates the high efficiency for uniformly distributed as well as real data. We obtained a significant reduction of the search time compared to nearest neighbor search in the X tree (up to a factor of 4).\",\"PeriodicalId\":264926,\"journal\":{\"name\":\"Proceedings 14th International Conference on Data Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"173\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 14th International Conference on Data Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.1998.655779\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 14th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.1998.655779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 173

摘要

多媒体数据库中的相似度搜索需要对大量高维点的最近邻搜索进行有效支持,作为查询处理的基本操作。最近的理论结果表明,最近邻搜索的最先进方法在高维中效率不高。因此,在我们的新方法中,我们预先计算任何最近邻搜索的结果,这对应于每个数据点的voronoi单元的计算。在第二步中,我们将voronoi单元存储在一个对高维数据空间有效的索引结构中。因此,最近邻搜索对应于索引结构上的简单点查询。虽然我们的技术是基于解空间的预计算,但它是动态的,即它支持插入新的数据点。广泛的实验评估表明,我们的技术对均匀分布和真实数据都具有很高的效率。与X树中的最近邻搜索相比,我们获得了搜索时间的显著减少(最多减少了4倍)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast nearest neighbor search in high-dimensional space
Similarity search in multimedia databases requires an efficient support of nearest neighbor search on a large set of high dimensional points as a basic operation for query processing. As recent theoretical results show, state of the art approaches to nearest neighbor search are not efficient in higher dimensions. In our new approach, we therefore precompute the result of any nearest neighbor search which corresponds to a computation of the voronoi cell of each data point. In a second step, we store the voronoi cells in an index structure efficient for high dimensional data spaces. As a result, nearest neighbor search corresponds to a simple point query on the index structure. Although our technique is based on a precomputation of the solution space, it is dynamic, i.e. it supports insertions of new data points. An extensive experimental evaluation of our technique demonstrates the high efficiency for uniformly distributed as well as real data. We obtained a significant reduction of the search time compared to nearest neighbor search in the X tree (up to a factor of 4).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信