利用机器学习技术预测湍流浮力射流

M. El-Amin, A. Subasi
{"title":"利用机器学习技术预测湍流浮力射流","authors":"M. El-Amin, A. Subasi","doi":"10.1109/ICCIS49240.2020.9257628","DOIUrl":null,"url":null,"abstract":"In this paper, machine learning techniques are utilized to predict the temperature distribution in a vertical buoyant turbulent jet. Experimental results for five cases with different flow rates are reported. The results show that temperature behaves linearly along the vertical axis of the jet. Also, the thermal stratification phenomenon has been observed. Different machine learning techniques have been used to predict the temperature distribution in the induced vertical buoyant turbulent jet. The used machine learning including k-nearest neighbor algorithm (k-NN), artificial neural networks (ANNs), Support Vector Regression (SVR), and random forest (RF). It was found both SVR and RF methods are the best machine learning techniques to predict the temperature distribution in a vertical buoyant turbulent jet.","PeriodicalId":425637,"journal":{"name":"2020 2nd International Conference on Computer and Information Sciences (ICCIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Predicting Turbulent Buoyant Jet Using Machine Learning Techniques\",\"authors\":\"M. El-Amin, A. Subasi\",\"doi\":\"10.1109/ICCIS49240.2020.9257628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, machine learning techniques are utilized to predict the temperature distribution in a vertical buoyant turbulent jet. Experimental results for five cases with different flow rates are reported. The results show that temperature behaves linearly along the vertical axis of the jet. Also, the thermal stratification phenomenon has been observed. Different machine learning techniques have been used to predict the temperature distribution in the induced vertical buoyant turbulent jet. The used machine learning including k-nearest neighbor algorithm (k-NN), artificial neural networks (ANNs), Support Vector Regression (SVR), and random forest (RF). It was found both SVR and RF methods are the best machine learning techniques to predict the temperature distribution in a vertical buoyant turbulent jet.\",\"PeriodicalId\":425637,\"journal\":{\"name\":\"2020 2nd International Conference on Computer and Information Sciences (ICCIS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 2nd International Conference on Computer and Information Sciences (ICCIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIS49240.2020.9257628\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd International Conference on Computer and Information Sciences (ICCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIS49240.2020.9257628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文利用机器学习技术来预测垂直浮力湍流射流中的温度分布。报道了5种不同流量工况下的实验结果。结果表明,温度沿射流垂直方向呈线性变化。此外,还观察到热分层现象。不同的机器学习技术已被用于预测诱导垂直浮力湍流射流中的温度分布。使用的机器学习包括k-最近邻算法(k-NN)、人工神经网络(ann)、支持向量回归(SVR)和随机森林(RF)。结果表明,SVR和RF方法都是预测垂直浮力湍流射流温度分布的最佳机器学习方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Turbulent Buoyant Jet Using Machine Learning Techniques
In this paper, machine learning techniques are utilized to predict the temperature distribution in a vertical buoyant turbulent jet. Experimental results for five cases with different flow rates are reported. The results show that temperature behaves linearly along the vertical axis of the jet. Also, the thermal stratification phenomenon has been observed. Different machine learning techniques have been used to predict the temperature distribution in the induced vertical buoyant turbulent jet. The used machine learning including k-nearest neighbor algorithm (k-NN), artificial neural networks (ANNs), Support Vector Regression (SVR), and random forest (RF). It was found both SVR and RF methods are the best machine learning techniques to predict the temperature distribution in a vertical buoyant turbulent jet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信